Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Неводные растворы коэффициент активности

    Гальванические элементы имеют разное назначение. Так, некоторые из них применяют в качестве источников постоянного тока, например, элементы Якоби —Даниэля, Лекланше, аккумуляторы. С другой стороны, изучение электродвижущей силы (э. д. с.) гальванических элементов (метод э. д. с.) широко используют во многих физико-химических исследованиях. Так, по Э.Д.С. гальванического элемента можно определить изменение энергии Гиббса, происходящее в результате реакции, протекающей в элементе, а также соответствующие изменения энтропии и энтальпии. Метод э. д. с. также широко применяют при исследовании свойств растворов электролитов, например, при определении коэффициентов активности, констант протолитической диссоциации, pH водных и неводных растворов, в потенциометрическом и полярографическом анализе и т. п. [c.478]


    Все приемы определения коэффициентов активности, рассмотренные для водных растворов, пригодны и для определения их в неводных растворах, если они отнесены к бесконечно разбавленному неводному раствору в качестве стандартного состояния. [c.62]

    Из прямых методов определения коэффициентов активности чаще всего применяют метод измерения электродвижущих сил цепей без переноса. Таким путем определены коэффициенты активности HG1 во многих неводных растворителях и в их смесях с водой (см. Приложение 5), коэффициенты активности многих галогенидов щелочных металлов (см. Приложение 6). Коэффициенты активности хлористого лития в амиловом спирте определены, кроме того, на основании коэффициентов распределения. Криоскопический метод широко применялся для определения коэффициентов активности солей в формамиде и в других растворителях, использовался также и эбулиоскопический метод. Затруднения в применении этих методов в неводных растворах, особенно в растворителях с низкой диэлектрической проницаемостью, связаны обычно с трудностями в экстраполяции свойств, например электродвижущих сил, к бесконечно разбавленному состоянию. Это объ- [c.62]

    Таким образом, мы вывели уравнение для единых нулевых коэффициентов активности протона, характеризующихся изменением изобарного потенциала при переносе протона из неводного раствора с активностью равной единице в водный раствор с той же активностью. Однако нельзя определить экспериментально отдельно коэффициент активности протонов или ионов лиония. Можно определить только средний коэффициент активности катионов и анионов. В обычных опытах нельзя осуществить отдельно перенос протонов из одного растворителя в другой. Можно перенести только хлористый водород или другую кислоту из одного растворителя в другой. Протон будет переноситься вместе с анионом, например — ионом хлора. Чтобы можно было сравнить выведенное уравнение с экспериментальными данными, перейдем к средним коэффициентам активности lg То = lg То ионов- [c.375]

    Неэлектролиты в неводных растворителях. Коэффициенты активности разбавленных растворов могут быть экспериментально изучены с помощью жидкостно-жидкостной хроматографии [27], [c.32]

    При исследовании влияния растворителей на свойства электролитов — на их растворимость, силу, кислотность, а также на электродвижущие силы — широко использовался метод единых нулевых коэффициентов активности уо-Эти коэффициенты, в отличие от обычных, отнесены к состоянию ионов или молекул в бесконечно разбавленном водном растворе и определяются работой переноса ионов или молекул из бесконечно разбавленного неводного раствора в воду. [c.6]


    Единые нулевые коэффициенты активности 7о характеризуют изменения энергии вещества при его переходе от бесконечно разбавленного раствора в любом растворителе к бесконечно разбавленному водному раствору. Эти коэффициенты не зависят от концентрации, а только от различия в состоянии вещества в бесконечно разбавленном водном и в бесконечно разбавленном неводном растворе и, следовательно, зависят только от взаимодействия ионов с водой и неводным растворителем, нанример со спиртом. Они зависят от среды, но не от концентрации вещества в растворе. [c.27]

    В последнее время изопиестический метод приобретает широкое распространение как массовый метод определения коэффициентов активности. Этим методом определены многие коэффициенты активности в водных растворах. Делаются попытки его применения и к неводным растворам. [c.42]

    Не следует думать, что вопрос об определении активности отдельных ионов является отвлеченным теоретическим вопросом. Наоборот, в определение активности или коэффициентов активности отдельных ионов упирается ряд практически важных проблем и прежде всего проблема стандартизации pH в водных и неводных растворах. Затруднения в определении pH состоят именно в том, что мы не можем оценить коэффициент активности отдельно ионов водорода, независимо от коэффициента активности сопутствующих анионов. [c.58]

    Коэффициенты активности в неводных растворах  [c.62]

    Концентрационные коэффициенты активности у в неводных растворах [c.62]

    Стандартизация pH в неводных растворах может быть выполнена так же, как и в водных растворах, т. е. путем изготовления стандартных растворов в том же растворителе, что и исследуемый раствор. Однако в этом случае возникает ряд затруднений. Например, коэффициенты активности сильных кислот значительно больше отличаются от единицы, чем в водных растворах сильные в воде кислоты становятся в неводных растворах слабыми хуже растворимы соли значительно меньше имеется данных о коэффициентах активности. В настояш ее время единственным веш еством, с помощью которого может быть произведена стандартизация pH в неводных растворах, является хлористый водород, так как для него имеются данные о коэффициентах активности в большинстве широко используемых растворителей и в их смесях с водой. В качестве электрода сравнения при измерениях в неводных растворах может быть использован хлорсеребряный электрод в растворе НС1, который вполне пригоден для измерений в ряде чистых неводных растворителей и их смесях с водой. [c.409]

    Кривые коэффициентов активности НС1 в неводных растворах не проходят через минимум (рис. 14). В средах с низкими значениями диэлектрической проницаемости коэффициенты активности НС1 численно очень малы, до- [c.63]

    Рассмотрим растворимость малорастворимых солей. Для растворов зтих солей величины концентрационных коэффициентов активности 7 близки к единице. Для хлористого серебра, растворимость которого в воде равна м, коэффициент 7, рассчитанный по Дебаю, будет равен 0,98—0,96. В спиртах с меньшей диэлектрической проницаемостью коэффициенты активности сильнее зависят от концентрации, но там и концентрация меньше. Если 7 близки к единице, то отношение этих величин в водном и в неводном растворах еще ближе к единице поэтому для малорастворимых солей уравнение (I, 107) можно записать так  [c.189]

    Причиной, обусловливающей возрастание коэффициентов активности, является гидратация ионов в водных растворах или сольватация их в неводных растворах. [c.204]

    Таким образом, неприложимость уравнения Робинсона — Стокса не может быть оправдана тем, что в неводных растворах эффект сольватации меньше, чем в воде. Отсутствие минимума в неводных растворах с низкой диэлектрической проницаемостью объясняется тем, что наряду с эффектом сольватации наблюдается и эффект ассоциации ионов. Следовательно, с одной стороны, связывание части растворителя в сольватную оболочку ионов и их частичная десольватация с ростом концентрации повышают коэффициенты активности, но, с другой стороны, ассоциация понижает их. Чтобы описать зависимость коэффициентов активности от концентрации, в этих случаях недостаточно учитывать только явление сольватации, необходимо учитывать также и изменение ассоциации ионов. [c.209]

    Из этого соотношения можно найти ионные коэффициенты активности, отнесенные к ионной концентрации т . Для этого необходимы данные о величинах а, полученные из независимых данных, например из электропроводности. В ряде случаев константы диссоциации для сильных электролитов известны. Они известны для растворов ряда кислот, и в частности для соляной кислоты, почти во всех растворителях. Расчеты показали, что в неводных растворах, в тех случаях, когда кривая 1п у не проходит через минимум, кривые 1п Уи все же проходят через минимум. Таким образом, ассоциация является причиной неприложимости уравнения Робинсона — Стокса и отсутствия минимума на кривых (рис. 53). Это обстоятельство показано на многих примерах в работе автора с Ивановой по отношению к солям и на очень большом числе примеров в работе Александрова по отношению к соляной кислоте. [c.209]


    Расчет pH в неводных растворах. В принципе алгебраические соотношения для расчета pH в водных средах пригодны для расчета pH в среде любого растворителя, конечно, с использованием констант кислотности и основности в данном растворителе и константы его автопротолиза. Однако на практике такие расчеты применяют редко. Во-первых, пока мало достоверных значений констант для неводных растворителей, во-вторых, мало сведений о процессах, протекаюпщх в этих средах, — ассоциации, ионизации и т. п., в-третьих, коэффициенты активности аниона и катиона (т. е. сольватированного протона) 1фи переходе от одного растворителя к другому изменяются по-разному, а экспериментально определяется лишь средний коэффициент активности. [c.137]

    Количественную оценку уравнению (VII,26) можно произвести путем сопоставления силы кислот в различных растворителях, т. е. наблюдая изменения силы кислот ири переходе от одного растворителя, взятого в качестве стандарта (обычно в качестве такого растворителя выбирается вода), к любому неводному растворителю. Тогда изменение силы кислоты моя ет быть сопоставлено с едиными коэффициентами активности у,,, отнесенными к водному раствору в качестве стандартного состояния и полученными пз независимых данных. [c.329]

    Таким образом, различие между константой ионного обмена в неводном растворителе и в воде определяется нулевыми коэффициентами активности ионов в ионите и в растворе. Определить изменение константы можно, если известны величины коэффициентов активности и /(,. [c.365]

    Активность ионов лиония в неводном растворителе, выражающая эффективную концентрацию электролита в данном растворе и отражающая в целом влияние взаимного притяжения и отталкивания ионов, сольватацию, неполную диссоциацию и т. п., и коэффициент активности стандартизуются по отношению к бесконечно разбавленному раствору (обозначается индексом ) в той же среде, т. е. в любой среде при т- -0, а = т, у = 1- [c.415]

    В этом уравнении % отнесена к бесконечно разбавленному неводному раствору лиония, а единый коэффициент активности (Уо. н+) отнесен к водному раствору протона. Отрицательный логарифм коэффициента активности (— +) служит мерой перехода от шкалы рНр к шкале рА. [c.421]

    Из сказанного можно также заключить, что понятия о силе кислоты и кислотности принципиально отличаются друг от друга. В то время как сила кислоты в любом растворителе обусловливается ее константой диссоциации, кислотность определяется активностью ионов лиония, связанной с основностью данного растворителя, их концентрацией и их концентрационными и едиными коэффициентами активности. Например, слабая в воде кислота в среде основного растворителя становится сильной, но ее неводный раствор может быть менее кислым, чем в воде, [c.421]

    При рассмотрении влияния растворителя (среды) на величины коэффициента активности и константы диссоциации ионизирующего растворенного вещества следует различать первичный и вторичный эффекты среды. В случае раствора электролита, в котором присутствуют нейтральные (неводные) молекулы, суммарный эффект среды определяется как логарифм отношения коэффициента активности электролита в присутствии нейтральных молекул к коэффициенту активности в чистой воде при той же концентрации электролита. Оба коэффициента активности в этом отношении отнесены к единице, как к коэффициенту активности при бесконечном разбавлении в чистой воде. Первичным эффектом среды обозначают тот предел, к которому приближается суммарный эффект, когда концентрация электролита стремится к нулю. Вторичный эффект среды всегда определяется как разность между суммарным и первичным эффектами. [c.479]

    Коэффициенты активности. Условие определения численных значений коэффициентов активности обычно заключается в том, что эти величины принимаются равными единице в бесконечно разбавленном в данном растворителе растворе. 1 сожалению, принятое условие не исключает неопределенности, обусловленной изменениями, которые испытывают коэффициенты активности в водной среде при добавлении к воде диоксана, спирта и других органических жидкостей. Если коэффициент активности ч стиц г-го вида в различных растворителях отнесен к стандартному состоянию в воде, то в неводных растворителях с уменьшением концентрации растворенного вещества коэффициент активности будет приближаться к значению, отличному- от единицы. Этот предел является мерой величины, названной эффектом (или влиянием) среды тУг, и может значительно отличаться от единицы. Коэффициент активности в данном растворителе,, отнесенный к стандартному состоянию в воде .уг (или просто у ) может быть записан в виде произведения  [c.174]

    Сделанное заключение находит подтверждение также при оценке влияния органического растворителя (эффект среды) на коэффициент активности соляной кислоты и других электролитов. На рис. VII.3 представлен средний коэффициент активности у соляной кислоты в воде и пяти неводных растворителях как функция моляльности кислоты. Для верхней части рисунка за стандартное состояние выбраны водные растворы следовательно, u,Y =l только при нулевой концентрации ионов в чистой воде, как [c.176]

    Значительно сложнее определять константы диссоциации для электролитов средней силы в водных, и особенно, в неводных растворах. В этих случаях свойства электролитов зависят как от неполной диссоциации, так и от значительного отличия коэффициентов активности ионов от единицы. Для электролитов средней силы нельзя пренебречь коэффициентом актив-1Г0СТИ, и описанный выше прием экстраполяции на нулевую ионную силу уже невозможен. Тем не менее и для них можно определить константу диссоциации. Трудность заключается в том, что для правильной оценки а ъ у при определении константы диссоциации нужно знать концентрацию ионов. Если пользоваться только данными по электропроводности, то для определения величины а нужно знать также значение константы диссоциации. Получается замкнутый круг Действительно [c.126]

    Есть три метода определения коэффициентов активности метод, основанный на измерении электродвижущих сил цепей без переноса бесконечно разбавленных растворах в различных растворителях метод, основанный ыа определении различия давления нара растворенного электролита метод, основанный на определении растворимости в различных растворителях (см. гл. I). В настоящее время еще мало данных о величинах нормальных потенциалов цепей в неводных растворах. В работах автора совместно с Е. Ф. Ивановой были измерены электродвижущие силы ряда цепей, содержащих галоидные соли щелочных металлов в спиртах. Было показано, что величины Ig 7о исследованных солей линейно зависят от 1/е (рис. 46). Этот результат кажется до некоторой степени неожиданным, так как теоретически выведенное уравнение (IV,60) o toiit из двучлена, первый член которого [c.187]

    Как показывает сопоставление, эти величины имеют один и тот же знак и порядок. Их сравнительно плохое совпадение является результатом суммирования всех экспериментальных ошибок в величинах lg7oмoлeкvл рассчитанных по разности, а главным образом пренебрежения концентрационными коэффициентами активности у насыщенных растворов кислот в неводных растворителях. При такой большой растворимости, как у [c.337]

    В менее разбавленных растворах значения коэффициентов активности однотипных солей обнпруживают существенную зависимость от природы катиона и аниона. В крепких растворах (а также в неводных системах) значения коэффициентов активности нередко сильно превышают единицу. Примером могут служить значения коэффициента активности NaOH при высоких молярных концентрациях его растворов  [c.185]

    Перхлорат галлия. Фостер получил соединения Ga( 10 )з 9,5Н20 и 0а(С104)з-6Н,0 растворением галлия в горячей концентрированной хлорной кислоте. Свойства этих соединений описаны. Перхлорат галлия образует в неводных растворителях комплекс с мочевиной состава Ga[С0(МН2),21(С104)з, плавящийся при 179 °С. В воде мочевина осаждает Оа(ОН)з. При обезвоживании гидратов перхлората галлия было получено основное соединение, предполагаемый состав которого 3Ga,0j-Ga( 10 )з. Был измерен коэффициент активности перхлората галлия в водных растворах и изучены изостатические свойства . [c.56]

    Поиски способа установления соотношения практических шкал активности протона ан в неводных и смешанных водных растворителях с условной шкалой в воде представляют, в сущности, попытку учесть влияние среды с помощью коэффициента активности аона водорода тУп- Рассмотрим два разбавленных раствора соляной кислоты с моляльностью т в водном (да) и неводном (х) растворителях. Активность протона в обеих средах, отнесенная к стандартному состоянию в воде, формально определяется соотношением —1ё( гс7н) среде 5 можно также записать — (" тУн вун) [см. уравнение VI.19]. Для разбавленных растворов величины гиУн и Ун могут быть найдены с помощью уравнения Дебая — Хюккеля. Как было показано, оценка ун, по Борну, мало пригодна. Разность нулевых точек двух шкал активности или ран составляет свободную энергию переноса 1 г-иона водорода из стандартного состояния в воде в стандартное состояние в растворителе 5. [c.186]

    В сообщении о результатах тщательного изучения второй ступени диссоциации фосфорной кислоты в воде и в растворах, содержащих 10 и 20 вес. % метанола с помощью гальванического элемента без переноса, составленного из водородного и хлорсеребряного электродов, Эндер, Телчик и Шефер [30] высказали мнение, что активность ионов водорода является общей мерой кислотности. Однако они не предложили способа ее оценки в неводных и смешанных среда . Аналогичного вида гальванический элемент был применен Парксом, Крокфордом и Найтом [31] для определения величины раН цитратных и фосфатных буферных растворов в водно-метанольном растворителе, содержащем 10 и 20 вес. % метанола. Величина раН была определена как отрицательный логарифм активности ионов водорода (молярная шкала). Коэффициент активности ионов водорода принимает значение, равное 1, при бесконечном разбавлении в каждом из смешанных растворителей. Поэтому рйН = —lg( H-si/H) (где коэффициент активности у выражен в шкале молярности с). [c.196]

    Эти коэффициенты не зависят от концентрации, а только от различия в состоянии вещества в бесконечно разбавленном водном и в бесконечно разбавленном неводном растворе и, следовательно, зависят только от взаимодействия ионов с водой и неводньш растворителем, например, со спиртом. Эти коэффициенты активности обусловлены первичным эффектом среды, т. е. зависят от самой среды, но не от концентрации вещества в растворе. [c.83]

    Коэффициенты активности в неводных растворах могут быть отнесены к бесконечно разбавленному неводному раствору в качестве стандарта [эти коэффициенты активности мьг отмечаем индексом ( )] и к единому стандартному состоянию у. Чаще всего в качестве такого стандартного состояни>г выбирается бесконечно разбавленный водный раствор. Связь между этими коэффициентами активности устанавливается <Г помощью единых нулевых коэффициентов активности У == ТоТ - Эти коэффициенты активности ь показывают различие в энергии вещества в стандартных состояниях. [c.141]


Смотреть страницы где упоминается термин Неводные растворы коэффициент активности: [c.102]    [c.483]    [c.28]    [c.35]    [c.155]   
Теоретическая неорганическая химия Издание 3 (1976) -- [ c.513 ]




ПОИСК





Смотрите так же термины и статьи:

Активность раствора

Активные в растворах

Коэффициент растворов

Коэффициенты активности единые в неводных растворах

Коэффициенты активности электролитов в неводных растворах

Коэффициенты неводных растворов

Растворы неводные



© 2025 chem21.info Реклама на сайте