Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Давление влияние Идеальных смесей

    Исследуем влияние энергии активации проницания на температурную зависимость Л, при этом примем, что стандартное давление Рст достаточно мало, следовательно, растворимость определяется законом Генри (3.11), а газовая фаза представляет собой идеальную смесь. [c.86]

    В тех пределах, в которых влиянием давления (сжимаемостью) можно пренебречь, выражение (1-163) применимо и к конденсированным фазам (твердой и жидкой) и может рассматриваться как определение любой идеальной смеси. Следовательно, с формальной точки зрения идеальную смесь можно определить как такую смесь, химический потенциал любого компонента которой пропорционален логарифму его молярной доли. Это положение, как указано выше, [c.51]


    Это смещение равновесия и ослабит влияние произведенного воздействия. В самом деле, если газовая смесь находится в условиях, когда к ней применимы законы идеальных газов, то при отсутствии смещения химического равновесия для повышения давления в два раза требовалось бы уменьшить объем тоже в два раза. Однако при образовании аммиака общее число молей газа сокращается, и поэтому уменьшение объема в два раза приводит к повышению давления не в два раза, а в меньшей степени. [c.238]

    Зависимость растворимости газов в жидкостях от давления. Если газ химически не взаимодействует с растворителем, то зависимость растворимости газа в жидкости от давления выражается законом Генри. Для идеальных растворов закон Генри может быть выражен уравнением (128.7). Закон Генри справедлив только тогда, когда растворение газа в жидкости не связано с процессами диссоциации или ассоциации молекул растворяемого газа. Расчет растворимостей газов по уравнению (128.7) при высоких давлениях приводит к ошибкам, если не учитывать зависимость коэффициента Генри от давления. Характер изменения растворимости некоторых газов от давления в воде при 298 К показан на рис. 126. С изменением давления газа растворимость различных газов меняется неодинаково и подчинение закону Генри (128.7) наблюдается лишь в области невысоких давлений. Различие в растворимости газовых смесей и чистых газов в жидкости определяется взаимным влиянием отдельных газов друг на друга в газовой фазе и взаимным влиянием растворенных газов в жидкой фазе. При низких давлениях, когда взаимное влияние отдельных газов невелико, закон Генри справедлив для каждого газа, входящего в газовую смесь, в отдельности. [c.383]

    Относительная летучесть интересующего компонента разделяемой смеси, которая в принципе всегда является многокомпонентной, зависит прежде всего от свойств компонентов смеси. Учет этой зависимости составляет одну из основных задач теории и практики разделения смесей. Разумеется, и при глубокой очистке веществ рабочим объектом также является многокомпонентная смесь, состоящая из очищаемого вещества и примесей. Однако здесь мы имеем специфическую особенность, которая заключается в том, что исходное очищаемое вещество содержит примеси уже в сравнительно небольших количествах. Обычно для достижения этой цели применяется предварительная очистка вещества. Таким образом, при глубокой очистке веществ приходится иметь дело с разбавленными растворами. В таких растворах содержание каждого из растворенных веществ (примесей) незначительно по сравнению с содержанием растворителя (основное вещество) и поэтому взаимным влиянием примесей в них можно пренебречь. Следовательно, в этом случае разделяемую многокомпонентную смесь условно можно рассматривать как бинарную, состоящую из основного компонента и данной примеси. При этом обычно принимают также, что в паровой фазе (при невысоких давлениях) ввиду ее большой разряженности отсутствует взаимодействие не только между молекулами примесей, но и между молекулами примесей и основного компонента, т. е. тем самым постулируется, что образующийся из жидкости пар представляет собой идеальный газ. Но даже при указанных упрощающих допущениях установление зависимости коэффициента разделения от свойств компонентов такой псевдобинарной смеси представляет непростую задачу. [c.33]


    При низких давлениях смесь водяного пара и неводного компонента допустимо рассматривать как смесь идеальных газов и пренебрегать влиянием на превышения общего давления над давлением пара воды. Давление пара воды находят по закону Рауля =р°Л и приравнивают его парциальному давлению водяного пара в газовой фазе по закону Дальтона р = рМ . Содержание воды в газовой фазе Л/" определяют при этом по уравнению Рауля — Дальтона [c.144]

    Пригодность растворителя для экстрактивной разгонки зависит от его влияния на летучесть компонентов, подлежащих разделению, и на некоторые другие факторы, упомянутые ниже. Обычно предпочтительно выбирать такой растворитель, который увеличивает нормальное отношение давлений насыщенных паров и образует систему, в высшей степени отклоняющуюся от идеальной. В дополнение к этому растворитель должен достаточно высоко кипеть, чтобы компоненты, полученные с растворителем в виде одной фазы, могли быть легко отделены с помощью ректификации. Он должен также хорошо растворять и хорошо растворяться сам, чтобы не требовалось исключительно большого отношения растворитель смесь и чтобы в процессе разгонки не происходило перехода растворителя в другую фазу. Если же растворитель переходит в другую фазу, то увеличение относительной летучести будет значительно меньшим. Растворитель должен быть термически устойчивым для того, чтобы он не разлагался в процессе экстрактивной разгонки или последующей ректификации, проводимой для удаления из растворителя растворенных компонентов. Растворитель не должен быть ядовит, чтобы с ним можно было просто обращаться. Он также не должен реагировать с компонентами смеси образование устойчивых химических соединений или азеотропов с растворителем при экстрактивной разгонке нежелательно и может помешать требующемуся разделению. Если растворитель кипит на 50° выше смеси, опасность образования азеотропов становится незначительной (см. раздел П1). Желательно (но не обязательно) применять в лаборатории растворитель, имеющий широкое распространение. [c.275]

    Давление пара, температуры кипения и азеотропы. Взаимодействие между молекулами в растворах может быть выявлено при построении зависимости давления пара или температур кипения от состава раствора. Отклонения от идеального поведения приводят к появлению на соответствующих кривых максимумов или минимумов. Точнее, положительные отклонения дают максимумы на кривых давления пара, минимумы на кривых температур кипения и азеотропы с минимальными температурами кипения при условии, что разница в температурах кипения компонентов раствора мала по сравнению с величиной отклонения или что разница в параметрах растворимости б достаточно велика. Противоположные закономерности наблюдаются при Отрицательных отклонениях. Смеси соединений, способных к образованию Н-связи, могут давать как положительные, так и отрицательные отклонения от закона Рауля в зависимости от относительной силы Н-связи между одинаковыми и неодинаковыми молекулами в растворе. Например, смесь ацетона с хлороформом дает азеотроп с максимумом температуры кипения, в то время как в случае смеси ацетона с водой было показано, что азеотроп либо вообще отсутствует, либо имеет весьма незначительно пониженную температуру кипения [959]. В первом случае в чистых компонентах Н-связь отсутствует и образуется только после смешения. Это ведет к отрицательным отклонениям от закона Рауля и появлению азеотропа с максимумом температуры кипения. Во втором случае ассоциация воды приводит к конкуренции между двумя типами равновесий. По-видимому, переход от связей вода — вода к связям вода — ацетон вызывает лишь малое суммарное изменение и отклонения, по существу, отсутствуют. Обзор проблемы межмолекулярных сил и обсуждение влияния Н-связи на свойства растворов были даны Роулинсоном [1751, стр. 187]. [c.41]

    Предположим, резервуар содержит нелетучее твердое вещество в атмосфере инертного идеального газа. Равновесное давление пара твердого вещества очень мало, и мы предполагаем, что нар образует идеальную газовую смесь с инертным газом. Парциальное давление пара твердого вещества термодинамически зависит от давления газовой фазы (эффект Пойнтинга), но, в первом приближении, это влияние незначительно. Если мы будем сжимать систему и строить функцию зависимости молярного состава газовой фазы от давления, то получим кривую 2 на рис. 1 — это означает отсутствие какого-либо взаимодействия между молекулами двух компонентов. Зависимость р — х становится совсем иной, если инертный газ заменить на реальный газ при температуре выше критической. Такая зависимость р — х представлена кривой 1 на рис. 1. Если при низких давлениях молярная доля уменьшается с увеличением давления газа, то выше определенного давления линия изгибается и молярная доля начинает увеличиваться с увеличением давления. При этих условиях становятся существенными силы притяжения между молекулами. Очевидно, растворимость нелетучего соединения резко увеличивается с давлением и становится значительно выше соответствующего давления насыщенных паров при этой температуре. [c.67]


    Рассмотрим данные табл. 6 с точки зрения изложенных выше представлений о влиянии давления на химическое равновесие в идеальных газовых смесях. Значение величины Кр для реакции синтеза аммиака при 450° возрастает почти в четыре раза при росте давления с 1 атм до 1000 атм. Очевидно, смесь Нз—N2—NHз значительно отличается от смеси идеальных газов. Чтобы установить, подчиняется ли эта смесь закономерностям, установленным для идеальных смесей реальных газов, сопоставим значения величин Ку, рассчитанные по коэффициентам летучести (рис. 4 и 5), с найденными из эксперимента (табл. 6) при помощи уравнения (I. 42). Необходимые для такого сопоставления данные приведены в табл. 8 [30]. [c.32]

    Это правило учитывает не только отклонение свойств смеси от законов идеального газа, но и влияние давления на свойства чистых компонентов. В условиях, когда смесь следует законам идеальных газов, уравнение (VIII, 36) переходит в уравнение (VI, 14), так как фугитивность компонента можно заменить его парциальным давлением, а фугитивность чистого компонента f° при давлении, равном общему давлению в смеси, просто общим давлением. [c.243]

    Теп.аовая нагрузка холодильной установки определяется тепловым потоком Q,, отводимым в конденсаторе паров толуола. Примем, что температуры газовых потоков на входе и выходе конденсатора определяются условиями насыщения для газовой смеси исходного и конечного составов, т. е, 1 (х. Яг) и t х, Рг) Температуру жидкого толуола на выходе и - аппарата I (см. рис. 12.1) примем равной температуре обедненного газового потока / (л, Яг) -Процесс в конденсаторе принят изобарным, давление в аппарате равно давлению исходной смеси Р,- При заданных значениях температуры и давления газовую фазу будем рассматривать как идеальную газовую смесь (что позволит при расчете энтальпии пренебречь эффектом смешения и влиянием давления). [c.353]

    В большей степени, чем при обычной вулканизации в прессе, экономическое значение способа литья под давлением определяется достижением возможно более короткого рабочего цикла, т. е. при данном времени подачи в форму и выгрузки из нее возможно меньшего времени вулканизации. Но желательное короткое время вулканизации может быть достигнуто не только применением больших количеств ускорителя и высоких температур вулканизации оно в большой степени определяется также температурой резиновых смесей, поступающих в литьевую форму. Это влияние тем значительнее, чем больше толщина стенок формуемого изделия. В идеальном случае надо было бы стремиться к тому, чтобы сырая смесь при вводе в форму уже имела температуру ее стенок. При этом условии не требуется необходимой обычно во время процесса вулканизации передачи тепла от стенок формы к смеси и задача формы сводится (наряду с приданием изделию определенной формы) лишь к сохранению температуры смеси. Формованные таким образом толстостенные изделия смогли бы в кратчайшее время провулканизоваться по всей массе одновременно и равномерно. Этому идеальному случаю, по-видимому, больше соответствует вулканизация в машинах червячного типа, чем в плунжерных. [c.64]

    В процессах азеотропной и экстрактивной ректификации все возрастающее применение аходят комбинированные разделяющие агенты. Чаще всего одно из веществ, входящих в состав такого комбинированного разделяющего агента, ограниченно смешивается с одним или несколькими компонентами заданной смеси. Как было показано выше, ограниченная взаимная растворимость является проявлением больших положительных отклонений от идеального поведения. Поэтому добавка вещества, ограниченно смешивающегося с компонентами заданной смеси, позволяет повысить селективность разделяющего агента. В процессах азеотропной ректификации это позволяет, кроме того, упростить регенерацию разделяющего агента. В процессах экстрактивной ректификации применение таких комбинированных разделяющих агентов, помимо благоприятного влияния на селективность, позволяет понизить температуру кипения кубовой жидкости, что имеет существенное значение, если температуры кипения компонентов заданной смеси и разделяющего агента сильно различаются. Так, применяемый для разделения смесей углеводородов С4 фурфурол при атмосферном давлении кипит при 161°С, а его смесь с 4 вес.% воды — при 102° С. Использование фурфурола с добавкой воды сильно облегчает технологическое оформление процесса экстрактивной ректификации, обеспечивая возможность применения в качестве теплоносителя водяного пара, а в качестве хладагента для конденсации — воды. [c.319]

    Анализ выполняется для практически весьма важного случая получения технологического кислорода ( /к1 = 95%), при этом воздух может рассматриваться как бинарная смесь кислорода и азота (см. гл. V). С целью исключения влияния на результаты расчета способа построения холодильного цикла при рассмотрении в действительных условиях схемы строятся с одинаковым холодильным циклом, а именно с холодильным циклом низкого давления. Схемы в идеальных условиях (см. п. 2,4) строятся по аналогии со схемами в действительных условиях — исключаются лишь турбодетандеры. Построние схем узлов ректификации производится на основе рассмотрения процесса в диаграмме X—у. Основное внимание уделяется процессу в ВК (см. п. 4). Из многочисленных возможных вариантов выбирается лишь несколько, характеризующих основные направления в совершенствовании схем узлов ректификации. [c.211]


Смотреть страницы где упоминается термин Давление влияние Идеальных смесей: [c.43]    [c.394]    [c.175]    [c.151]   
Перегонка (1954) -- [ c.18 ]




ПОИСК





Смотрите так же термины и статьи:

Смесь идеальная



© 2025 chem21.info Реклама на сайте