Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Масс-спектрометрия, одновременное

    Несмотря на то что масс-спектрометр разделяет атомы на изотопы, с его помощью можно определять атомные веса элементов. В этом приборе одновременно измеряются не только масса каждого изотопа, но и относительное содержание атомов каждого изотопа в образце элемента. Например, неон состоит из трех изотопов с атомными массами 19,9924,20,9939 и 21,9914 ат. ед. массы (рис. 4.6). Масс-спектрометрические измерения показывают, что 90,92% атомов неона обладают [c.61]


    Вопросы интерпретации масс-спектров выходят за рамки настоящего руководства и подробно изложены в специальных монографиях [65, 66]. Кратко следует отметить, что в хромато-масс-спектрометрии в настоящее время основным приемом анализа полученной информации является масс-спектрометрическая идентификация, т. е. поиск в больших массивах данных масс-спектров, лучше всего совпадающих со спектрами определяемых соединений, осуществляемый с помощью ЭВМ. Существуют способы предварительной групповой идентификации, т. е. определения на первой стадии анализа масс-спектра гомологического ряда вещества [66] с последующим уточнением его структуры с учетом известных закономерностей фрагментации данного ряда. Однако в хромато-масс-спектрометрии особый интерес представляют методы совместного использования для идентификации как газохроматографических, так и масс-спектрометрических характеристик. Действительно, все типы параметров удерживания, обсуждаемые в разделе III.2.2, могут быть определены в ходе хромато-масс-спектрометрического анализа одновременно с регистрацией масс-спектров. Если в спектре неизвестного вещества регистрируется пик молекулярных ионов, то вычисление так называемых гомологических инкрементов индексов удерживания позволяет уточнять результаты групповой идентификации, что важно для соединений разных классов, обладающих практически одинаковыми закономерностями фрагментации [64]  [c.203]

    Идентификация примесей в технических смесях осуществлялась комплексным методом, включающим хроматографические методы, ИК-, УФ- и масс-спектрометрию. Одновременно с исследованием состава продуктов были разработаны хроматографические методики, применяемые в настоящее время в аналитическом контроле производства капролактама. [c.137]

    В загрязненной атмосфере ПА присутствуют в адсорбированном виде на частицах пыли и в виде аэрозолей. Для идентификации ПА в воздухе, так же как и в обычном анализе, применяют сочетание методов газовой хроматофафии и масс-спектрометрии, жидкостной и тонкослойной хроматофафии. Для одновременного обнаружения ряда ПА (флуорена, аценафтена, хризена и бенз-а-антрацена) успешно применен метод поляризационной флуориметрии в сочетании с жидкостной хроматографией [284] способ пригоден для определения названных ПА в атмосферном воздухе и в морских отложениях. [c.100]

    Разработана установка (рис. 17), с помощью которой можно одновременно записывать кривые ДТА, ТГ и осуществлять анализ выделяющейся газовой фазы с помощью масс-спектрометра типа квадрупольного масс-фильтра, который упрощает измерение по сравнению с обычным масс-спектрометром магнитного поля. [c.35]


    Вся органическая химия посвящена установлению строения органических соединений и синтезу их на основании знания-строения и типичных реакций образования различных связей. Мы познакомились уже с идеей установления строения соединений химическими методами, которые и сейчас являются основными, но все больше дополняются физическими методами. Пытаясь сформулировать сущность химических методов установления строения в одной фразе, можно сказать, что они состоят в констатации родственных связей серии веществ (веществ с родственной структурой) и в выяснении строения одного или нескольких узловых веществ этой серии путем их постепенной деструкции (или, как ее иногда называют, деградации). Такой химический путь позволяет установить строение любого сколь угодно сложного вещества, однако ценой большого труда. И этот большой труд все более облегчается благодаря новым физическим методам разделения и идентификации продуктов деградации, особенно благодаря различным видам хроматографии (стр. 38). Одновременно и методом деградации и методом идентификации осколков молекулы (по их молекулярному весу) служит масс-спектрометрия (стр. 589). Разнообразные, все более развивающиеся физические методы в состоянии сильно облегчить задачу химика. Некоторые из этих методов дают возможность установить такие важные детали структуры, как характер связи, межатомные расстояния и углы, наличие или отсутствие того или иного рода взаимодействия электронных орбиталей, подобного сопряжению, наличие [c.341]

    Обнаружение и идентификация веществ могут быть осуществлены физико-химическими и физическими методами анализа, такими, как спектральный, ИК-спектроскопия, масс-спектрометрия, хроматография. Эмиссионный спектральный анализ относится к методам, которые позволяют одновременно определять и качест- [c.117]

    Масс-спектрометрия широко применяется при исследовании механизма и кинетики химических превращений в полимерах. Высокая чувствительность метода, быстрота анализа (сотни анализов в секунду), возможность наблюдения за отдельным веществом в смеси обусловили возможность исследования самых начальных стадий разрушения полимеров в процессах термической, фотохимической, механической деструкции. Одновременное изучение состава и кинетики образования летучих продуктов в этом сл) ае позволяет получить данные, характеризующие взаимодействие полимеров с излучениями. Здесь с масс-спектрометрией не может конкурировать ни один другой физический метод. [c.144]

    Масс-спектрометрия. При облучении паров органических соединений в глубоком вакууме пучком электронов образуются положительно и отрицательно заряженные частицы — ионы. Самая крупная из образующихся при этом частиц — молекулярный ион — получается в результате потери молекулой одного электрона (положительный молекулярный ион) или в результате присоединения к молекуле одного электрона (отрицательный молекулярный ион). Одновременно под действием электронного удара молекулы исследуемых соединений распадаются на фрагменты, образуя большое число осколочных ионов. Как величина молекулярного иона, так величина и число образующихся осколочных ионов различны для разных соединений, но всегда одинаковы для одного и того же вещества. Таким образом, возникает возможность в специальных приборах — масс-спектрометрах отличать одно органическое соединение от другого и определять содержание отдельных соедине-ний в сложных смесях. [c.129]

    Процессы деструкции полимеров можно оценивать по изменению массы образца при его нагревании. Приборы, используемые для этой цели, позволяют проводить исследования как при постоянной температуре (изотермический метод), так и при постоянной скорости повышения температуры (термогравиметрический анализ - ТГА). Для измерения потери массы образцов в изотермическом режиме используют приборы на основе пружинных микровесов или электронных микровесов Сарториуса. В процессе измерения можно одновременно регистрировать мольное соотношение различных газообразных продуктов деструкции с помощью масс-спектрометра, подключенного к компьютеру, или газового хроматографа. [c.393]

    Электромагн. метод основан на тех же принципах, что и масс-спектрометрия. С его помощью можно разделить одновременно все изотопы данного элемента. Примен. он для получения малых кол-в изотопов более 50 элементов и для пром. получения Недостатки малая произво- [c.214]

    Масс-спектрометрия в комбинации с АВГ имеет ряд преимуществ, включая помимо высокой чувствительности возможность однозначного, одновременного и быстрого детектирования нескольких газообразных веществ в рамках доступного диапазона масс прибора. Но в дополнение к проблеме представительного отбора пробы возникает существенная проблема, как сконструировать интерфейс между МС и ТА-прибором, в частности ТГ-анализатором, [c.484]


    В период между 1925 — 1930 гг. Сведберг с помощью ультрацентрифугирования произвел определение молекулярных масс различных белков. Одновременно применение других аналитических методов, как, например, электрофореза и различных видов хроматографии, привело к развитию аналитической белковой химии. В 1951 — 1956 гг. Сенгер [20, 21] установил аминокислотную последовательность инсулина. Использованные при этом методы легли в основу систематического определения первичной структуры многих белков. Созданный Эдманом в 1966 г. секвенатор и применение масс-спектрометрии в сочетании с ЭВМ как средством регистрации, обработки и оценки масс-спектрометрических данных привели к тому, что к настоящему времени опубликовано более 15 ООО работ, посвященных определению аминокислотных последовательностей, и установлены первичные структуры более чем для 1000 белков. [c.343]

    Для регистрации изменения интенсивности ионного тока применяют следующее устройство. На пути ионного луча из источника ионов ставят датчик в виде пластины, через которую проходит основная часть ионного луча, а небольшая часть (-5%) разряжается. Пластина соединяется с усилителем и самописцем. Под действием разряжающихся ионов в этой цепи начинает течь ток, интенсивность которого зависит от количества вещества, содержащегося в каждой фракции, поступающей из хроматографа. Изменение интенсивности ионного тока фиксируется самописцем в виде хроматограммы. Датчик, вмонтированный в масс-спектрометр, является детектором к хроматографу. Таким образом, одновременно происходит фиксирование хроматографического пика вещества определенной фракции и его масс-спектра. [c.44]

    Все большее распространение получают сейчас масс-спектрометры с фурье-преобразованием. Устройство таких приборов очень простое. Они содержат ловушку ионов, образуемую шестью электродами, которые помещены в высокий вакуум и однородное магнитное поле (сверхпроводящий магнит). Такая ячейка одновременно может быть источником ионов, масс-анализатором и детектором, разделенными во времени, но не в пространстве. Будучи ионными ловушками, масс-спектрометры с [c.53]

    Многие вещества имеют столь низкие давление паров или термическую стабильность, что для проведения анализа их следует вводить непосредственно в ионный источник. В этом случае образец наносится из раствора на наконечник штока, вводимого через вакуумный затвор и закрепленного напротив ионного источника для предотвращения потерь образца и обеспечения давления в источнике. Помимо того, что шток прямого ввода более удобен для нелетучих образцов, он требует значительно меньше вещества, чем ввод через баллон. Нагрев образца осуществляется устройством, вмонтированным в шток рядом с наконечником (в котором находится вещество) для быстрого нагрева и предотвращения термического разложения чаще всего применяется программируемый обогрев, что делает возможным точный контроль скорости нагревания и температуры. Установка программируемого нагревателя также полезна для прямого ввода в ионный источник масс-спектрометра с одновременным пиролизом образцов типа полимеров, недостаточно летучих для проведения обычного анализа. [c.128]

    Таким образом убеждаемся в том, что, во-первых, происхождение важнейших пиков в масс-спектре объясняется без противоречий, и, во-вторых, был получен спектр действительно этого соединения. Однако м- и о-хлоранилины дают очень близкие спектры, поэтому различить эти изомеры методом масс-спектрометрии практически невозможно. Более того, сходные масс-спектры можно ожидать также и для производных пиридина с такой же брутто-формулой. Этот пример иллюстрирует возможности масс-спектромет-рического структурного анализа, но одновременно свидетельствует и о том, что подобные задачи следует решать, только сочетая масс-спектрометрию с другими спектроскопическими методами — особенно с ЯМР-спектроскопией. [c.296]

    Методы масс-спектрометрии основаны на получении ионов определяемого элемента, их последующем разделении в магнитном поле (или другими средствами) по величине отношения т е (где т — масса иона, е — величина его заряда) и регистрации спектра полученных групп частиц. Они применяются в аналитической химии брома для количественного определения изотопов и для структурного анализа смесей гомологов по их молекулярной массе. Наиболее универсальные варианты — метод вакуумной искры и метод ионной бомбардировки, как и оптический спектральный анализ, позволяют одновременное определение большого числа элементов. Однако масс-спектры отличаются от оптических спектров отсутствием мертвых зон и в меньшей мере обременены помехами со стороны элементов-спутников, что обеспечивает более высокую чувствительность анализа, достаточную для решения ряда специальных задач химии материалов очень высокой степени чистоты. [c.158]

    Метод искровой масс-спектрометрии применен для одновремен ного определения 25 элементов, в том числе и брома, в особо чистых воде и кислотах, используемых в электронной промышленности [719]. Внутренним стандартом служил Sr. Чувствительность определения всех элементов составляла 0,005 нг в i г различных веществ, а в 1 мл исследованной воды было найдено 0,1 нг брома. Надежность результатов анализа зависит от материала посуды, используемой для выпаривания образцов. Как оказалось, емкости из полипропилена или поли- (4-метил-1-пентена) привносят меньше загрязнений, чем линейный полиэтилен, тефлон или викор. [c.159]

    ИОННЫЙ МИКРОАНАЛИЗ, метод локального анализа. Исследуемый образец бомбардируют сфокусиров. пучком первичных ионов (диаметр пучка 1—100 мкм, энергня 10- — 10 Дж, плотность тока 0,1—10 А/м эмитированные из образца вторичные ионы регистрируют с помощью масс-спектрометра (см. Масс-спектрометрия). Одновременно происходит катодное распыление образца. Прибор для И. м. (ионный микроанализатор) состоит из источника ионов, систем сбора вторичных ионов и фокусировки ионных пучков, масс-анализатора и регистрирующего устройства. [c.225]

    Масс-спектрометр МХ-1215 представляет собой проточный масс-спект1)Ометр, где на шести постоянных коллекторах возможна регистрация одновременно шести соответствующих интенсивностей массовых чисел до значения 44. Имеется специальная автоматическая система калибровки масс-спектрометра с подключением баллонов с калибровочными газовыми смесями разного состава, управляемая ЭВМ. [c.20]

    Для метода характеристических сумм используют масс-спектры, полученные при высокой энергии ионизирующих электронов (70 эВ), для метода молекулярных ионов чаще используют масс-спектры низких энергий (10— 2 эВ). При этом резко падает интенсивность пиков осколочных ионов (становятся неотличимыми от фона) и одновременно повышается интенсивность пиков молекулярных ионов, что облегчает их выделение из смеси, и дает возможность более точного определения изотопных пиков. Уменьшение энергии ионизирующих электронов позволяет снизить интенсивность побочных процессов, таких, как выделение алкенов из алкил-бензолов, полициклических циклоалканов. и др. [181 —183]. Низковольтная масс-спектрометрия используется крайне редко (за исключением анализа азотсодержащих соединений). [c.133]

    Получив широкое признание как аналитический метод в нефтяной промышленности, масс-спектрометрия начала внедряться в другие области науки и промышленности для установления структуры и химического поведения органических соединений в многообразных реакциях. При переходе от углеводородов к соединениям с различными функциональными группами были решены вопросы, связанные с адсорбционной способностью, агрессивностью и нестабильностью соответствующих органических соединений. Одновременно были получены масс-спектры высокомолекулярных представителей кал(дого пз рассматриваемых классов. Можно без преувеличения сказать, что успехи химии природных соединений последних лет во многом связаны с интенсивным использованием масс-спсктрометра. Именно благодаря масс-спектрометрии [c.4]

    После того как установлены молекулярные предшественники ионов, обнаруженных в масс-спектре, необходимо перейти от ионных токов к парциальным давлениям. Это стало возможным после того, как М. Инграм и Дж. Дроуарт оснастили ионный источник масс-спектрометра эффузионной камерой Кнудсена, схема которого приведена на рис. 2.18. С этого момента появилась возможность не только изучать состав парогазовой фазы, но и одновременно определять парциальные давления каждого компонента, а также зависимости давления от температуры. Масс-спектроскопический метод используют при изучении процессов парообразования многих труднолетучих веществ. [c.62]

    Поток газа из хроматографической колонки проходит через специальное устройство — сепаратор, удаляющий за пределы прибора больп1ую часть газа-носителя при одновременном эффективном обогащении остающейся части газа молекулами хроматографируемых соединений. Из сепаратора поток газа направляется в ионный источник масс-спектрометра, где осуществляется иопизация компонентов исследуемой смеси. Возникающие при этом положительные ионы с различными массами (зарядами и энергиями) выталкиваются нз ионного источника в зону переменного магитного поля, причем примерно 10% от общего количества отводится в /1,егектор полного ионного тока, по показателям которого на потенциометре запИ сывается хроматограмма анализируемой смеси. В любой [c.366]

    После сепаратора в-во поступает в ионный источник масс-спектрометра. Ионизация осуществляется ускоренными электронами, неоднородным электрич. полем, ионами газа-реагента и др. Число образующихся при этом ионов пропорционально кол-ву поступаюп(его в-ва. С помощью установленного в масс-спектрометре датчика, реагирующего на изменение полного ионного тока, происходит запись хроматограммы. Т. о., масс-спектрометр служит детектором хроматографа. Одновременно с записью хроматограммы в любой точке хроматографич. пика м. б. зарегистрирован масс-спектр, к-рый позволяет устанавливать строение соответствующего компонента. [c.669]

    Анализируемое в-во (обычно в р-ре) вводится в испаритель хроматофафа, вде мгновенно испаряется, а пары в смеси с газом-носителем под давлением поступают в колонку. Здесь происходит разделение смеси, и каждый компонент в токе газа-носителя по мере элюирования из колонки поступает в мол. сепаратор. В сепараторе газ-носитель в осн. удаляется и обогащенный орг. в-вом газовый поток поступает в ионный источник масс-спектрометра, где молекулы ионизируются. Число образующихся при этом ионов пропорционально кол-ву поступающего в-ва. С помощью установленного в масс-спектрометре датчика, реагирующего на изменение полного ионного тока, записывают хроматофаммы. Т. обр. масс-спектрометр можно рассматривать как универсальный детектор к хроматофафу. Одновременно с записью хроматофаммы в любой ее точке, обычно на верщине хроматофафич. пика, м. б. зарегистрирован масс-спектр, позволяющий установить строение в-ва. [c.319]

    Метод ИЦР ПФ позволяет одновременно регистрировать все ионы в ячейке прибора, определять их массы и относит, кол-ва, что дает возможность следить за превращениями ионов в ячейке при исследованиях ионно-молекулярных р-ций. Т. к. ширина спектрального пика после преобразования Фурье гармонич. сигнала, имеющего длительность Т, обратно пропорциональна Г, то разрешающая способность R = mJam = со/Дш я Тсо. Для обыкновенных электромагнитов с величиной Я 2 Тл и временем синхронного движения ионов Тя 1Уа 1 мс величины R я 10 близки к рекордным для др. методов масс-спектрометрии. Использование сверхпроводящих магнитов с Я 5 Тл и более глубокого вакуума (10 Па) приводит к увеличению как со, так и Т (до десятков с), что позволяет достичь Д 10. Точность определения абс. значений масс атомов и молекул этим методом превышает 10".  [c.375]

    Пульсация ионного источника необходима для того, чтобы избежать одновременного прихода к детектору ионов с различными т/г. Схематичное изображение ВП-масс-спектрометра приведено на рис. 9.4-7,б. Обычно ВП-анализаторы комбинируют с методами ионизации ПД и MALDI (см. выше разд. сМетоды мягкой ионизации , с. 266). Их преимущество заключается в практически бесконечном диапазоне анализируемых масс, высокой скорости сканирования, простоте и низкой стоимости прибора. Хотя на сегодняшний день разрешение спектрометра ограничено (обычно не более 300), новые разработки, а именно ВП-анализатор с отражательной геометрией и принудительной экстракцией ионов, позволили достичь значительного улучшения разрешения (до 5000), что дало возможность проводить точный анализ масс. [c.277]

    Важной характеристикой значимости количественного метода является предел обнаружения или нижняя граница определяемых содержаний. Для ГХ-МС достигнуты величины порядка 1 пг/с (масс-спектрометр является детектором, чувствительным к потоку массы). Современные квадрупольные масс-спектрометры обеспечивают, например, ГХ-МС-определение (с отношением сигнал/шум, равным 30) 200 пг метилстеарата в случае ионизации электронным ударом и 100 пг бензофенона в случае химической ионизации. Приборы с двойной фокусировкой имеют характеристики, обеспечивающие отношения сигнал/шум, равные 200 при ГХ-МС-определении массы метилстеарата 100 пг как для химической ионизации, так и для ионизации электронным ударом и определение 30 фг 2,3,7,8-ДБДД с отношением сигнал/шум не менее 10. Однако, если вспомнить о химических процессах, сопровождающих ионизацию в случае электронного удара и особенно в методах мягкой ионизации, становится ясно, что отклик детектора весьма значительно зависит от исследуемого соединения. Более того, приведенные числа дают мало представления о том, каких пределов обнаружения можно ожидать в реальном случае. В случае анализа реальных образцов пределы обнаружения прежде всего определяются так называемым химическим шумом, а не электронными шумами детектора и цепи усилителя. Успех применения метода в анализе реальных образцов полностью зависит от одновременной и совместной настройки различных его составляющих пробоподготовки и разделения образца, ионизации, масс-спектрометрического анализа, детектирования и обработки данных. Кроме того, в такой ситуации более важны концентрационные (относительные), а не абсолютные пределы обнаружения. [c.299]

    В последнее время масс-спектрометрия приобрела значение и при определении элементного состава продуктов органического синтеза с использованием точного определения массы при помощи двухсекторных приборов высокого разрешения. И в этом случае наиболее распространен вариант ионизации электронным ударом. В некоторых случаях для обеспечения значимого сигнала молекулярного иона требуются электроны с низкой энергией (10-20 эВ в отличие от обычного значения 70 эВ). Точное определение массы производят при помощи методики совпадения пиков. Определяемое соединение вводят в образец одновременно с подходящим веществом сравнения, например перфторке- [c.300]

    В первых масс-спектрометрах в качестве регистрирующего устройства использовали обыкновенный самописец. Затем стали применять многошлейфовые осциллографы, что позволяло записывать масс-спектры на фоторегистрирующей бумаге. Такой метод регистрации обеспечивал запись одновременно нескольких масс-спектров при разной чувствительности гальванометров. В результате интенсивность пиков, зашкаленных на чувствительных шлейфах, может быть определена из записей на более грубых. На рис. 1.7 приведен масс-спектр тетрадекана, полученный с помощью четырехшлейфового осциллографа. [c.13]

    По мере усложнения объектов исследования возрастает необходимость выйти за пределы аналитических возможностей одномерной масс-спектрометрии. Анализируемые компоненты могут элюироваться одновременно с примесями, что приводит к трудностям идентификации. Матрица образца может давать сильный химический фон или недостаточную информацию для определения структуры соединения. Подобные проблемы могут быть решены путем использования двухмерной масс-спектрометрии - МС/МС. Метод МС/МС позволяет точно выбрать интересующие ионы, игнорируя все шумы и примеси. Выбранные ионы могут быть подвергнуты фрагментации и затем проанализированы поскольку фрагментация протекает по предсказуемым путям, идентификация етановится однозначной. Упомянутый выше прибор представляет собой новый стандарт в ВЭЖХ/МС, соединяющий хорошо зарекомендовавшую себя аналитическую методику с инновационной технологией МС/МС или даже M . [c.127]

    Мобильные масс-спектрометры применяются для определения следовых количеств токсичных веществ в районах размещения военных объектов и для экологического контроля состояния окружающей среды (воздуха, почвы, вод). При работе в режиме селективного мониторинга ионов приборы могут осуществлять количественный анализ одновременно 60 заданных веществ из библиотечного списка. Измеренные концентрации веществ автоматичесьси записываются и сравниваются с допустимыми пределами в случае превышения нормы дается сигнал тревоги. Встроенная в машину сисгема ориентации позволяет в автоматическом режиме привязывать измеренные концетрации к месту анализа. Одним из примеров успешного применения такого мобильного масс-спектрометра является анализ воздуха на территории предприятия, производящего полистирол и полиуретан, где произошел пожар. За 30 минут была зарегистрирована хроматограмма дыма и по встроенной библиотеке масс-спектров определены попавшие в окружающую среду компоненты. [c.140]

    Исчерпывающие сведения о теории масс-спектрометрического метода и его применении в анализе различных материалов приведены в [1334, 1335а]. Наибольшими аналитическими возможностями обладает искровая масс-спектрометрия. С ее помощью осуществляется многоэлементный анализ жидкостей, образцов геологического, космохимического и биологического происхождения, легкоплавких металлов, стекол, керамики и пр. Одновременно может быть определено до 70 элементов-примесей из практически любой основы. [c.171]

    В других методах разделения (анализа) ионов масс-спект-рометрия чаще всего используется в сочетании с газо-жидко-стной хроматографией. В масс-спектрометрах с квадруполь-ным анализатором разделение ионов осуществляется с помощью электронного фильтра (квадрупольного масс -анали затора), который представляет собой четыре стержнеобразных электрода. Проходящие через такой анализатор ионы одновременно подвергаются возд ствию радиочастотного поля, которое при заданной частоте пропускает через анализатор только ионы с определенным т/г. Изменяя частоту радиочастотного поля, можта чрезвычайно быстро сканировать весь спектр высокая скорость сканирования является основным преимуществом таких анализаторов. Кроме того, масс-спектрометры с квадрупольным масс-анализатором сравнительно компактны, просты, надежны и дешевы их недостатком является невысокая (по сравнению с приборами с магнитным сектором) разрешающая способность. В масс-спектрометрах с масс-селек-тивной ионной ловушкой ионы удерживаются в ловушке в течение нескольких микросекунд, накапливаются в ней и затем последовательно выталкиваются из ловушки этим достигается высокая чувствительность, что особенно важно в сочетании с газо-жидкостным хроматографом. [c.179]

    Разделительная эффективность. Значения разделительной эффективности и соответствующего ей эффективного радиуса нор вычисляются по формуле (3.103) для коэффициента разделения ступени а, его значение а измерено в опытах по обогащению [3.124, 3.153, 3.222, 3.223]. Концентрации Л и М или лучше N и N", газовой смеси на входе в диффузионный делитель, содержащий фильтр, и на выходе из него измеряются с помощью масс-спектрометра (для изотопной смеси) или с помощью фракционной конденсации (для смеси N2 — СО2 или Нг — СО2). Если испытываемый диффузионный делптель изготовлен по схеме со скрещенными потоками, то измеренный коэффициент обогащения ступени (а — 1) [см. (3.137, 3.145)] будет пропорционален разделительной эффективности пористого фильтра 5. Для того чтобы исключить коэффициент рэлеевской дистилляции (0) и коэффициент перемешивания 2, коэффициент обогащения (а — 1) необходимо измерять при нескольких значениях коэффициента деления потоков в делителе 0 и при нескольких значениях расхода питания Ь затем значение (а — 1) экстраполируется к 0 = 0 и 1= [3.222]. Обе экстраполяции можно производить одновременно [3.223] для заданных значений Т, Р ц Р ирн изменении одного только потока для которого задается несколько фиксированных значений Ьи- Соответствующие им измеренные значения коэффициента деления потоков (причем все 0л<О,1) и из.мерениые значения [c.128]

    Бром часто определяют в различных объектах методами оптической спектроскопии, рентгеноспектрального анализа, масс-спектрометрии, активационного анализа, радиохимии и энталь-шшетрии. Многие из них не требуют сложной подготовки проб к анализу (и поэтому экспрессны), имеют высокую чувствительность и, наконец, позволяют одновременно определять ряд элементов, мешающих друг другу в химическом анализе. Учитывая этп преимущества физических методов, а также бурное развитие и совершенствование инструментальной техники в наш век, можно ожидать, что роль физических методов в аналитической химии брома будет стремительно возрастать. [c.145]

    Для одновременного определения Вг, С1, С, F, Н, J, N и S в органических веществах навеску 2—3 мг сжигают в токе Oj в присутствии Pt-катализатора и небольшую часть газа направляют для измерения в квадрупольный масс-спектрометр, позволяющий путем быстрого сканирования регистрировать 12 отношений т/е. С помощью многоканального устройства сигналы раздельно интегрируются, и результаты фиксируются сразу в процентах. Анализ длится всего 2 мин. Абсолютная погрешность определения брома в модельном соединении gHg IBr составила 1% [651]. [c.159]


Смотреть страницы где упоминается термин Масс-спектрометрия, одновременное: [c.11]    [c.265]    [c.693]    [c.315]    [c.120]    [c.170]    [c.361]    [c.188]    [c.115]    [c.62]   
Биохимия растений (1968) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Масс-спектрометр

Масс-спектрометрия

Масс-спектрометрия масс-спектрометры



© 2025 chem21.info Реклама на сайте