Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разгонка азеотропная применение

    Другой метод разделения смесей близкокипящих углеводородов отличается от описанного тем, что для разделения азеотропов используется не расслаивание, а экстрактивная ректификация [316]. Первая стадия разделения аналогична применяемой в методе, описанном выше, и заключается в отгонке углеводородов с большей степенью насыщения в виде азеотропов с надлежащим образом выбранным разделяющим агентом. Вторая стадия заключается в разделении этих азеотропов путем экстрактивной ректификации с применением в качестве разделяющего агента такого вещества, которое обеспечивает отгонку разделяющего агента, использованного при азеотропной ректификации. При этом углеводороды в смеси с разделяющим агентом процесса экстрактивной ректификации получаются в виде кубовой жидкости. Третья стадия процесса заключается в разгонке кубовой жидкости с отбором в дистиллате углеводородов, а из куба — разделяющего агента. [c.281]


    Повышение производительности установок получения этанола из биомассы достигается применением непрерывных способов ферментации. Для этих процессов могут использоваться такие же или модифицированные реакторы. Подача субстрата осуществляется непрерывно, а высокая концентрация дрожжевых культур обеспечивается за счет их выделения из отходящего потока и возврата в реактор. Концентрация спирта поддерживается в пределах 4,5—7,0%. Для получения 95%)-го спирта выходящий из аппарата продукт проходит несколько ступеней разделения. На первой жидкость отгоняется от твердых остатков. Затем жидкость фракционируется и получается 50— 70%)-й этанол. На следующей ступени разгонки концентрация его повышается до 90—95%. Более высокая концентрация спирта может быть достигнута только азеотропной перегонкой. Дистилляция спирта — самая энергоемкая и технологически сложная стадия всего процесса получения этанола ферментацией. [c.123]

    Применение азеотропной разгонки подобно экстрактивной разгонке ограничивается обычно близкокипящими смесями, которые трудно разделимы обычными методами высокоэффективной ректификации. Концентраты, приготовленные при помощи обычной ректификации, часто могут быть подвергнуты дальнейшему разделению при помощи азеотропной разгонки в присутствии компонента, который образует минимальную или максимальную постоянно кипящую смесь с одним из веществ, подлежащим выделению. Вообще говоря, смесь, которую хотят разделить, должна перегоняться в пределах температур не свыше 20°, и она сама по себе может представлять азеотроп. [c.303]

    Наиболее желательным случаем является такой, при котором азеотроп по охлаждении разделяется на два слоя один—богатый добавкой, которую возвращают в ректифицирующую колонку, и другой—обогащенный компонентом, который желательно выделить. Последний подвергают повторной ректификации для удаления остатка добавки в виде азеотропной смеси. Для минимальных азеотропов эта операция дает чистый продукт в кубе. В промышленной практике разделение фаз, о котором говорилось выше, весьма существенно для успешного применения азеотропной разгонки. Примерами такого процесса [c.309]

    В лабораторной работе, когда выделение добавки для повторного применения несущественно, часто возможно бывает удаление добавки химическим способом. Например, при азеотропной разгонке углеводородов с органическими кислотами последние могут быть отделены промыванием со щелочью, а амины, как, например, анилин, могут быть удалены минеральными кислотами. Если компонентом азеотропной смеси является вода, то она может быть удалена соответствующим осушающим веществом. Действительно, процесс перегонки с известью, применявшийся в Германии до того, как был разработан процесс Кея для производства безводного этилового спирта, являлся примером применения этого принципа для разрушения водно-спиртовой азеотропной смеси. [c.310]


    В то время как экстрактивная разгонка довольно сложна для лабораторных условий, но относительно просто осуществляется при непрерывном промышленном процессе, азеотропная перегонка может быть весьма легко использована в условиях обычной лабораторной периодической разгонки. Однако промышленное применение непрерывной азеотропной перегонки представляется делом относительно сложным. Это показано на рис. 33, иллюстрирующем процесс получения абсолютного этилового спирта по Кею. Этиловый спирт (95%-ный) и добавка бензола питают колонну 1, где получается абсолютированный этиловый спирт в виде жидкости в кубе, в то время как вся вода выносится в дестиллят в составе тройной азеотропной смеси с этиловым спиртом и бензолом, кипящей при 65°. Состав (в вес.%) тройной азеотропной смеси следующий  [c.324]

    Азеотропная перегонка. Процесс разделения азеотропной смеси путем добавления нового компонента, образующего гетерогенную постоянно кипящую смесь, как в только что рассмотренном случае, обычно называется азеотропной перегонкой, хотя это и является неправильным применением термина, если ограничить термин азеотропная смесь гомогенной постоянно кипящей смесью. Подобный (по принципу) процесс приобрел в последние годы важное значение в связи с разделением растворов уксусная кислота — вода, причем тот же самый принцип приложим и в других случаях. Уксусная кислота и вода не образуют азеотропной смеси, но разгонка их трудна вследствие малой разницы между составом сосуществующих фаз. При добавлении третьего компонента, практически не смешивающегося с водой, дестиллатом при перегонке является не вода, а гетерогенная постоянно кипящая смесь воды и добавленного компонента, которая называется улавливателем . Она кипит при более низкой температуре, чем вода, и поэтому значительно увеличивает конечную разность температур в системе. Например, если улавливателем является изопропиловый эфир, то точка кипения гетерогенной смеси с водой будет равна 61°С, и колонна в состоянии произвести разделение дестиллата и кубового остатка, кипящих соответственно при 61 и 118°С (уксусная кислота) вместо 100 и 118°С. Головной дестиллат разделяется механически, а улавливатель возвращается в колонну. (Отметим сходство этого процесса с перегонкой с водяным паром.) Дальнейшие подробности, относящиеся к рассматриваемому процессу, можно найти в статье Отмера [183]. [c.667]

    Экстрактивная и азеотропная дестилляция находят свое главное приложение для разделения смесей, компоненты которых имеют слишком близкие температуры кипения, для того чтобы было экономично применить к ним простую ректификацию. Эти процессы особенно применимы, если подлежащие разгонке компоненты принадлежат к разным по строению группам веществ и при прибавлении некоторого третьего вещества их летучесть изменяется в различной мере. Часто оказывается, что такие разные по своей структуре вещества с близкой упругостью паров образуют азеотропы, которые методами простой дестилляции разделить невозможно, и в этом случае из всех дестилляционных процессов лишь азеотропная и экстрактивная ректификации являются возможными для применения.  [c.75]

    Отделение ароматических углеводородов от парафинов и нафтенов путем применения других методов, например, разгонки с добавлением полярного компонента (спирта или жирной кислоты), с которым ароматические углеводороды образуют азеотропную смесь с минимальной температурой кипения, связано со значительно более трудоемкими операциями, а также с потерями. Теми же недостатками характеризуется метод экстракционной перегонки. [c.43]

    Это явление представляет большое практическое значение, так как не только для разделения самих азеотропных смесей требуется применение других, часто значительно более сложных методов, но соответствующие затруднения возникают и при разгоне любых других смесей той же системы, т. е. смесей из тех же компонентов, но при другом относительном содержании последних. Если система из данных компонентов обладает азеотропной точкой (точкой максимума или минимума на кривых температур кипения или давления пара), то любая из смесей этой системы при разгонке даже с наиболее эффективно работающей колонкой (лабораторной или производственной) может быть разделена в данных условиях только на азеотропную смесь и компонент, содержащийся в избытке в исходной смеси. Азеотропные смеси существуют во многих системах, встречающихся в производственной или лабораторной практике. Сюда относятся, например, все водные растворы сильных кислот, водные растворы этилового, пропилового или бутиловых спиртов и множество других, как водных, так и неводных систем. [c.7]

    Экстрактивная разгонка подробно изучалась в лабораториях в основном с последней целью. Азеотропная разгонка, которая широко применялась в 40-х годах для выделения ароматических углеводородов, в настоящее время уступила свое место хроматографии. Однако имеются патентные указания [48] о применении азеотропной разгонки для разделения парафинов и нафтенов. С этой целью азеотропная и экстрактивная разгонки могут найти применение в исследованиях нефтепродуктов. [c.92]


    В промышленности вакуумная перегонка была открыта независимо и случайно. В 1867 г., когда Джошуа Меррилл перегонял 3,4 пенсильванской нефти, забило конденсатор. Перегоняемая загрузка была слишком тяжелой для использования в целях освещения и слишком легкой—для смазочного масла [30] закупорка конденсатора была вызвана, повидимому, отложением парафина в конденсаторе. Давление стало настолько большим, что пришлось погасить огонь и дать охладиться кубу, из-за чего и образовался вакуум. Когда аппарат вскрыли, в конденсаторе был найден прозрачный нейтральный дестиллят. Меррилл позже отметил, что подобный дестиллят может быть получен с помощью перегонки с перегретым водяным паром, который действует, кроме того, как добавка при азеотропной перегонке. Вскоре последовало применение вакуумной перегонки нефтяных масел в заводском масштабе, а с 1870 г. в Рочестере (штат Нью-Йорк) было начато промышленное производство вакуумных масел из нефти. Вакуумная перегонка масел в заводском масштабе в других областях промышленности получила распространение лишь в XX в. Наиболее ранними примерами из этой области является перегонка фенола и крезолов [31], а также вакуумная перегонка с паром глицерина [32—35]. Румфорд [36] в 1802 г. подробно описал процесс разгонки с применением острого пара и дал превосходное теоретическое объяснение механизма перегонки с паром, который он назвал выгоняющим паром . Этот процесс, который можно рассматривать как предтечу азеотропной вакуумной разгонки с добавкой [27, 37, 38], требует некоторой примеси инертного газа для того, чтобы ускорить перегонку и избежать толчков . Вполне возможно осуществить перегонку в вакууме с водяным паром [39—45], перегретым водяным даром [46] или парами других подходящих веществ. [c.392]

    Области применения молекулярной дистилляции весьма разнообразны. Этим методом проводят очистку термонестойких или высококипящих веществ с молекулярной массой 250—1200 (получение масла для вакуумных насосов и смазочных масел с незначительным температурным изменением вязкости, очистка пластификаторов, приготовление витаминов и т. д.). Молекулярной дистилляцией могут быть разделены изотопные смеси, а также вещества с одинаковыми парциальными давлениями паров при температуре разгонки, но с различными относительными молекулярными массами. Например, молекулярной дистилляцией, как это следует из уравнения (П.193), можно разделять и азеотропные смеси, для которых а=1. [c.103]

    Разделение смеси этиленгликоля с этилкарбитолом достигается ирн разгонке с ксилолом. Метод, основанный на образовании азеотропной смеси этиленгликоль — ксилол [105], позволяет получать пригодный для технического применения продукт с ксилольным запахом. [c.321]

    Для Правильного применения непрерывной азеотропной разгонки необходимы достаточно подробные сведения о перегоняемой системе, включая состав питания, долю добавки в азеотропной смеси и температуры кипения азеотропов и неазеотропов. Как обычно принято в промышленности, например при производстве абсолютного этилового спирта или при обезвоживании уксусной кислоты, применяются селективные добавки, которые образуют минимальные постоянно кипящие смеси (имеющие минимальную температуру кипения). Разделение на колонках происходит между азеотропом, получаемым в виде дестиллята, и неазеотропом, остающимся в виде чистого вещества в кубе. В таких случаях добавка вводится вместе с питанием в количествах, достаточных только для того, чтобы образовать азеотроп, который удаляется в виде дестиллята. [c.319]

    Значительно реже применение вакуумной разгонки двухкомпонентной жидкости бывает вызвано желанием увеличить относительную летучесть, что может произойти с уменьшением давления. Использование вакуумной разгонки с этой целью может сказаться удобным для тех смесей, относительная. летучесть которых при атмосферном давлении мала, а при пониженном давлении—больше. Часто это свойство обнаруживают члены гомологических рядов и иногда в достаточно сильной мере. Однако в тех случаях, когда вещества, подлежащие разделению, очень сильно различаются химически, появляются исключения. Это особенно справедливо тогда, когда теплота испарения более летучего компонента значительно меньше, чем другого компонента. Давление пара более летучего компонента в этом случае будет слабее изменяться с температурой, и. может оказаться, что относительная летучесть будет уменьшаться с падением давления. Специальное применение этот принцип находит при разгонке под уменьшенным давлением веществ, которые образуют азеотропы при атмосферном давлении [7] (см. гл. I, раздел II, 1 игл. III, разделы i и III). Почти для всех таких смесей снижение давления вызывает обогащение состава азеотропной смеси более летучим компонентом [8—12]. Дальнейшее уменьшение давления может полностью воспрепятствовать образованию какого-либо азеотропа (см. Светославский и Андерсон [13]). Примером этого является смесь этанол—вода, которая не дает азеотропа ниже 70 мм рт. ст. [14, 15]. Следует отметить еще две особенности вакуумной разгонки, имеющие меньшее значение. Первая—применение вакуума с целью экономии тепла при производственных операциях, включающих несколько стадий вторая—обеспечение передачи тепла от источника, имеющего невысокую температуру, например водяной пар низкого давления. [c.391]

    В настоящее время признается выгодным извлекать уксусную кислоту из жижки, минуя стадию получения древесного порошка. Жижка состоит в основном из воды, уксусной кислоты и метилового спирта в меньшем количестве в ней содержатся другие кислоты, спирты, эфиры и прочие органические вещества. По этому способу работает ряд лесохимических заводов . Перед извлечением кислоты из жижки извлекают спирт и смолы. Уксусная кислота может быть пол чена экстракцией ее из жижки каким-либо низкокипящим растворителем или с помощью азеотропной разгонки смеси в присутствии дополнительного компонента — увлекателя, или, абсорбционным методом с применением в качестве абсорбента древесных смоляных масел. [c.62]

    Как было указано во введении, применение хроматографического метода к анализу в гомологических рядах вызвано главным образом двумя причинами. Во-первых, п])облема анализа таких рядов представляет собой весьма трудный пример адсорбционного анализа, во-вторых, какой-либо другой метод анализа таких смесей отсутствует. Можно сказать без пpeyвeлпчe шя, что не имеется даже хорошего метода качественного анализа в гомологических рядах, особенно в том случае, когда количества веществ малы и нельзя провести фракционную разгонку в высокоэффективных колонках. Кроме того, разгонка не может быть применена для соединений, разлагающихся при нагревании или образующих азеотропные смеси. [c.80]

    Методы ароматизации природного и крекинг-газа успешно разрабатываются, и последним нововведением является использование индивидуальных углеводородов. Так, н-гептан превращается с 90% выходом в толуол при дегидрировании над окисями алюминия, хрома и молибдена. Толуол с выходом 51—57% получается в так называемом Британском процессе при использовании н-гептана (выделенного из масла Фишер-Тропша) и хромового кислотного катализатора, нанесенного на активный глинозем. При применении любого процесса ароматизации превращение никогда не проходит нацело, и ароматические углеводороды должны быть отделены от неароматических. Лишь затем производят выделение индивидуальных веществ. Обычно применяют фракционную перегонку, азеотроп ную перегонку с использованием метанола, метилэтил-кетона 5 или фенола в качестве переносчика и химическую очи стку. Применяется также комбинация фракционной и азеотропной разгонки и кислотной обработки. Ароматические соединения могут быть отделены в виде комплекса с жидким фтороводородом, содер- [c.62]

    Для уменьшения количества формиата предлагается удалять воду азеотропной отгонкой с растворителями. Ряд авторов использовали этот метод [20—22]. В качестве растворителя применяли ацетон, изооктиловый спирт, циклоалифатические спирты и др. В первых двух случаях этриол-сырец содержал 1—2% неорганических солей. При использовании в качестве растворителя метилциклогексанола, этриол-сырец содержал 0,5% формиата натрия. Авторы не наблюдали разложения этриола при последующей его ректификации, так как разгонку проводили при остаточном давлении 1,5—2 ммрт.ст. и 140° С. При работе на промышленных установках обеспечение такого высокого вакуума при ректификации чрезвычайно затруднено, а применение вакуума с остаточным давлением 40 мм рт. ст. требует значительно более высоких температур (220°С и выше), что приводит к разложению этриола при наличии в нем 0,5—1% формиата примерно на 30% [4]. [c.60]

    Для понижения температуры в кубе колонны возможно также применение гетероазеотропной ректификации с водяным паром, так как циклогексан, циклогексанон и циклогексанол образуют гетеро-азеотропные смеси с водой с темп. кип. 69,5, 97,0 и 97,8° С. Температура конденсации азеотропной смеси циклогексан — вода допускает применение воды в качестве хладоагента. Однако, поскольку вода частично растворима в циклогексаноне и циклогексаноле, кубовый продукт оказывается увлажненным (при разгонках на описанной выше колонне кубовый продукт содержал до 8—10% растворенной и частично эмульгированной воды). Во избежание потерь полезных продуктов на последующих стадиях вакуумной ректификации, вызванных низкой температурой конденсации азеотропных смесей воды с цик.иогексаноном и циклогексанолом при пониженном давлении (например, 23° С при 30 мм рт. ст.), требуется предварительная осушка кубового продукта после полной отгонки циклогексана с водой. Наиболее целесообразным способом удаления воды является азеотропная сушка. Однако при проверке в лабораторных условиях на приборе для простой перегонки оказалось, что для удаления [c.100]


Смотреть страницы где упоминается термин Разгонка азеотропная применение: [c.12]    [c.157]   
Перегонка (1954) -- [ c.324 ]




ПОИСК





Смотрите так же термины и статьи:

Разгонка



© 2025 chem21.info Реклама на сайте