Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диссоциация связей

    Релей и др. приравняли это значение к энергии диссоциации перекиси. Чтобы подтвердить идентичность этих величии, авторы попытались рассчитать энергию диссоциации связи перекиси, исходя пз известных теплот образования перекиси, трет-бутало-вого спирта, изобутана и трет-бутильного радикала. К сожалению, такие расчеты могут [c.319]

    Теплота первой реакции равна 102 ккал. а второй — 347,5 ккал таким образом, энергия диссоциации связи С—Н в метане равна 102 ккал, а средняя энергия связи составляет 86,9 ккал. Последняя величина рассчитана по термохимическим данным и зависит от величины скрытой теплоты сублимации графита, а первая является экспериментальной величиной, полученной на основе кинетических измерений. Зависимость между ними заключается в том, что в данном случае сумма индивидуальных энергий диссоциации связи в СН , СНд, СНз которые сильно различаются между собой, должна быть равна четырехкратной средней энергии связи. Таблицы энергии связи, составленные, нанример, Паулин-гом [33], дают сведения о средней энергии связи и не имеют прямого отношения к проблемам разложения углеводородов, поэтому дальше будут рассматриваться только методы определения энергии диссоциации связи. Раньше всех стали изучать энергию диссоциации связи в сложных молекулах Поляни и сотрудники [7], которые исследовали пиролиз ряда иодидов в быстром потоке несуш,его газа при низких давлениях иодидов, В этих условиях, по их мнению, вторичные реакции не представляют важности, и измеренная" энергия активации соответствует энергии реакций  [c.14]


    Совершенно очевидно, что энергия активации обратных реакций равна нулю, отсюда изморенная энергия активации становится равной теплоте реакции, а также энергии диссоциации связи В—1 [c.14]

    Энергию диссоциации связи В—Н можно вычислить, комбинируя экспериментально найденные значения энергий диссоциации связи и стандартные термохимические данные. [c.14]

    Ими была определена энергия активации обратной реакции. Так как теплота реакции является разностью между энергией активации прямых и обратных реакций, то отождествление наблюдаемой энергии активации с энергией прямой реакции дает возможность рассчитать теплоты реакции. После этого, используя стандартные термохимические данные, можно-рассчитать энергию диссоциации связи Н—Н. Механизм реакции был лучше всего изучен для метана и достаточно хорошо для этана. Для этих случаев вычисленные энергии диссоциации имеют погрешность до 3 ккал. [c.15]

    Все методы измерения энергии диссоциации связи / —Н дают величины соответствующей энергии диссоциации связи/ —В путем комбинаций данных по теплотам образования В—В и / —Н. Надежность измерений энергии диссоциации связи можно оценить из сравнения величин, полученных различными методами (табл. 2). [c.16]

    Энергия диссоциации связи [c.16]

    Степень диссоциации увеличивается при разбавлении раствора электролита (закон разбавления Оствальда) и также изменяется с ростом температуры. При добавлении одноименных ионов степень диссоциа- -ции уменьшается. Для электролитов, распадающихся в растворе на два иона, степень диссоциации связана с константой диссоциации следующим соотношением  [c.86]

    Энергия связи (энергия диссоциации связи) [c.96]

    Степень диссоциации связана с константой диссоциации. Так, для бинарного электролита ВА (бинарным называют электролит, каждая молекула которого образует два иона) концентрации ионов Сд-ь и Сд- (или Сд2-ь и Сд2-) и концентрация недиссоциирован-ных молекул См связываются с общей концентрацией электролита с соотношениями  [c.389]

    Обзор работ по термохимии и энергии диссоциации связей дан Скиннером [c.261]

    Коэффициенты уравнений вида (1) для энтальпий им ют смысл средних энергий диссоциации связи /с-го типа (/3 ), средних энергий координационной связи и т. д. (см. [19, 201). [c.182]

    Влияние температуры на степень диссоциации электролита можно описать точными и строгими термодинамическими соотношениями. При данной концентрации электролита степень его диссоциации связана с константой диссоциации уравнением (152.7). Температурная зависимость констант диссоциации выражается уравнением изобары реакции (77.2). Нередко температурная зависимость констант диссоциации выражается кривой с максимумом. Так, например, константа диссоциации муравьиной кислоты максимальна при 24,4°С, уксусной — при 22,5°С и т. д. При температуре, соответствующей максимуму этой кривой, тепловой эффект диссоциации становится равным нулю. [c.437]


    Некаталитическое гидрирование практически не осуществляется из-за высокой энергии диссоциации связи Н—Н (435 кДж/моль). [c.11]

    Энергия четырех валентных колебаний по связям С—Н, С—Р и С-1 аппроксимируется потенциалом Морзе. Для энергии шести деформационных колебаний было использовано приближение, аналогичное принимаемому в методе "порядок связи энергии связи" [295], где О, - энергия диссоциации связи / (3, = / /20, /с, — силовая постоянная гармонического валентного колебания к .. — силовая постоянная деформационного [c.124]

    Так, гомолитическое расщепление связи С—Н должно легче протекать в случае этана, чем этилена и ацетилена (см. энергии диссоциации связей С—Н). [c.111]

    Молекула метана — тетраэдр, угол между валентностями составляет 109°28. Метил — плоская "молекула, угол между валентностями равен 120°. Чтобы перейти от тетраэдрической формы молекулы СН 1 к плоской, необходимо затратить энергию, поэтому энергия диссоциации связи С—Н больше средней энергии этой связи. [c.113]

    Распад молекул на радикалы является эндотермическим процессом при этом требуется энергия, равная энергии диссоциации связи [c.113]

    Так, на основе модели РРК можно объяснить влияние длины волны на квантовый выход СО при фотолизе Hj O, но отсутствие данных по точному значению энергии диссоциации связи препятствует однозначному толкованию опытных данных. Зависимость от длины волны флуоресценции фотовозбуж-денного р-нафтиламина [9] также была интерпретирована как скорость спонтанной изомеризации в метастабильное состояние не способное флуоресцировать. При этом была использована модель для к Е), эквивалентная модели РРК. [c.201]

    Перекиси и гидроперекиси не очень стабильны, причем энергия диссоциации связи 0 — 0 изменяется от 27 ккал для диацетилперекиси примерно до 36 ккал для очень стабильной ди-т/)ет-бутилперекиси. [c.413]

    Поскольку энергии диссоциации связей С—Вг как в алкил-, так и в арил-бромидах порядка 50—70 ккал, а /)(Н — 0Н) = 118 ккал, свободно-радикальный цепной процесс в таких системах при 25° невозможен. В действительности в большинстве случаев энергии связей настолько велики, что исключают возможность протекания цепных свободно-радикальных реакций между органическими соединениями при температурах ниже 100°. (Исключение составляют такие соединения, как перекиси, азосоединепия и системы, содержащие окислительно-восстановительные реагенты, такие, как Fe " , Со и т. д.) [c.471]

    Реакция распада NO I с образованием NO+ I2 при 1000° К протекает с больщой скоростью. Энергия диссоциации связи N0— С1 равна 36 ккал. Показать количественно, что скорость образования атомов С1 при 1000° К сильно увеличивается в присутствии небольших добавок N0. [c.586]

    Эффективность ингибитора окисления зависит от энергии диссоциации связи 1п—Н. Чем слабее эта связь, тем лучше действует ингибитор. Однако если она очень слабая, то ингибитор начинает интенсивно взаимодействовать с кислородом и быстро расжэдуется. [c.81]

    Большое количество измерений энергии диссоциации связи было произведено Шпарцеы с сотрудниками [50] при пиролизе углеводородов, в быстропоточно систсме в присутствии значительного избытка толуола. Большая скорость потока обеспечивает отсутствие дальнейших реакций и, таким образом, кинетика процесса не искажается. Образующиеся свободные радикалы вступают в реакцию преимуш ественно с избыточным толуолом, что приводит к ингибированию радикальных цепей. С другой стороны, образующиеся радикалы бензила сильно стабилизуются резонансом и, следовательно, являются нереакционноспособными, подвергаясь только-димеризации. Характер реакции может быть проверен путем выделения дибензила и сопоставления количества его с выходом других продуктов реакции. Как и в случаях, указанных выше, наблюдаемая энергия активации приравнивается к энергии диссоциации изучаемой связи. Метод ограничивается соединениями с более слабой связью, чем связь С—И в толуоле, так как в противном случае реакция осложняется термическим разложением последнего. [c.15]

    Анализ полученных продуктов показывает, что вопреки мерам предосторожности побочные реакции все же имеют место, однако принимается, что их влияние на измеряемую энергию активации незначительно. К недостаткам этого метода следует отнести и то обстоятельство, что из-за большой скорости потока определяемое значение температуры газа не вполне достоверно. Наконец, давление реагирующих веществ может меняться лишь в ограниченном интервале, что затрудняет проверку, действительно ли реакция соответствует простой мономолекулярной реакции. Однако, несмотря на все недостатки, метод является весьма эффективным, и Э1]ергии диссоциации связи в лучших случаях могут быть измерены с точностью до 2—3 ккал. В других случаях предполагаемые механизмы реакций недостаточно- хорошо доказаны и результаты вызывают сомнение. Хорошей проверкой результатов определения энергии диссоциации спязи, полученных кинотпческнм нутом, яв гяются данные по взаимодействию электронов. Этот метод [18, 46, 47] состоит в наблюдении потенциалов появления (.4 ) в масс-стгоктрометре для следующих типов реакций  [c.15]


    Как было указано выше, для образования ионов карбония требуется либо отщепление атома водорода посредством разрыва углерод-водородной связи, либо присоединение атома водорода с образованием новой углерод-водородной связи. В связи с этим для теории таких механизмов приобретают большое значение накопленные экспериментальные данные, показывающие большую реакционную способность третичных углерод-водородных связей сравнительно со вторичными связями С —Н и последних сравнительно с первичными при диссоциациях ионного типа (крекинге) и реакциях присоединения. Относительная реакционная способность третичных, вторичных и первичных углерод-водородных связей в термических реакциях через свободные радикалы соответственно меньше. Далее будет показано, что в силу вышесказанного третичные и вторичные структуры играют доминирующую роль в механизме ионных реакций. Приведенное отношение между реакционными способностями связей С —Н основано на данных, полученных нри масс-снектрометрическом измерении потенциалов образования различных алкил-ионов. Потенциалы образования алкил-ионов вместе с соответствующими термодинамическими данными и данными по энергиям диссоциации связи для углеводородов дают величину энергии, необходимую для получения алкил-ионов из родственных им углеводородов эта величина энергии может быть качественно коррелирована с относительной реакционной способностью первичных, вторичных и третичных углеводородных структур как в случае низкотемпературных реакций присоединения, так и при высокотемпературной диссоциации (ионных процессах). Аналогично определяемая энергия сво-бодноради1 альной диссоциации связи С — Н [37, 39] отражает гораздо меньшее различие в реакционной способности разных типов С — Н связей в случае термических свободиораднкальных реакций таким образом, существует явный нараллелизм между экспериментальными данными каталитического и термического крекинга и энергетикой предложенных механизмов. [c.115]

    Структура литьевых эластомеров, полученных с применением диаминов, сложна (ароматические кольца, биуретовые звенья и водородные связи). Очевидно, связи с наименьшей потенциальной энергией диссоциации и обусловят пределы деформирования полимера. Экспериментально определенная мольная энергия активации диссоциации биуретовых звеньев составляет около 192 кДж/моль, а энергия диссоциации связи С—N в отсутствие разветвления (биуретов) 338 кДж/моль. Из этого можно сделать [c.546]

    В случае электролита АХ, диссоциирующего на ионы А+ и Х-, константа и степень диссоциации связаны соотношением (закон разбавления Оствальда)  [c.124]

    Шестикоординированные октаэдрические комплексы гораздо труднее реагируют по механизму Sn2 из-за наличия шести лигандов вокруг центрального атома металла, например Со(1П), которые оставляют мало места для встраивания замещающей группы в активированный комплекс. Исследования реакций замещения октаэдрических комплексов Со(1П) показали, что важнейшая, или скоростьопределяющая, стадия таких реакций включает диссоциацию связи между Со (III) и группой, покидающей комплекс. Замещающая группа не вовлекается в эту исходную стадию диссоциации. Например, в водном растворе HjO замещает С1 в комплексе Со(КНз)5СР , в результате чего образуется o(NH3)jH20 . С исследованиями скоростей этой и других подобных реакций лучше всего согласуется диссоциативный механизм Sfjl, который можно описать следующим образом  [c.384]

    Согласно теории РРКМ величина энергии диссоциации образующейся (разрывающейся) связи влияет на зависимость от давления константы скорости рекомбинации (распада). В рамках этой теории был проведен расчет зависимости от давления константы скорости Аг,, в котором величина энергии диссоциации связи С—О являлась варьируемым параметром. Из условия наилучшего совпадения экспериментальной и расчетной зависимостей Аг1 от давления определялась энергия диссоциации связи С—О. [c.190]

    Так, например, в молекуле изопентана. характеристики сву , с1 С—С, так же, как и С—Н, различны (различны длины, днноль-ные -моменты, энергии диссоциации связей), хотя различия эти и. талы. [c.112]

    Элсктроотрицательност ) атомов углерода надаст в 1 яду С >С2>Сз, а энергии диссоциации связей С —И возрастают-Сз—Н<С2—Н<С1—Н, В молекуле бутадиена проявляется сопряжение между л-электронамн двойных связей. Это приводит к уко рочеиню простой связи и к некоторому удлинению двойных связей по сравнению со стандартными значениями  [c.112]

    Важной характеристикой связи является энергия диссоциации. Следует отличать энергию связи от энергии диссоциации связи для сложных молекул (более чем двухатомных). Так, например, энергия разрыва связи НО—Н в молекуле НгО, т. е. тепловой эффект реакции Н20 = Н0 + Н составляет 118 ккал1моль, в то время как средняя энергия связи О—Н в молекуле НгО равна половине се теплоты атомпзацип, т. е. половине теплового эффекта реакции [c.113]

    Точно так же энергия разрыва одпой из связей С—Н н молекуле СН4(СН4 СНз + Н) равпа 102 ккал моль, средняя же энергия связей С—Н в СН4 равна 99 ккал моль. Несовпадение энергии разрыва связи С—И и ее средней энергии объясняется тем, что ггри диссоциации связи С—Н молекулы метана происходит измене-пне электронной конфигурации системы. [c.113]


Смотреть страницы где упоминается термин Диссоциация связей: [c.320]    [c.340]    [c.363]    [c.217]    [c.9]    [c.13]    [c.261]    [c.52]    [c.96]    [c.382]    [c.76]    [c.106]    [c.114]    [c.120]    [c.111]   
Водород свойства, получение, хранение, транспортирование, применение (1989) -- [ c.208 , c.209 ]




ПОИСК







© 2025 chem21.info Реклама на сайте