Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Агрегация вторичная

    Из внешних причин, влияющих на физико-химические взаимодействия между частицами четвертого уровня, существенный вклад вносят эффекты пятого уровня. Так, увеличение мощности на перемешивание приводит, с одной стороны, к увеличению частоты столкновений кристаллов, возрастанию кинетической энергии частиц. Рост кинетической энергии частиц приводит к более быстрому преодолению потенциального барьера, возникающего между частицами за счет сил отталкивания, что в свою очередь способствует агрегации кристаллов. С другой стороны, увеличение мощности на перемешивание приводит к таким явлениям в ансамбле кристаллов, как дробление, истирание кристаллов, появление вторичных зародышей. Явления вторичного зародышеобразования могут протекать только на четвертом уровне. Вторичные зародыши образуются при столкновениях кристалл — кристалл, кристалл — мешалка, кристалл — стенка аппарата. [c.10]


    Другим важным воздействием со стороны пятого уровня является пересыщение в аппарате. Так, увеличение концентрации в растворе может привести к самопроизвольной агрегации кристаллов в ансамбле за счет уменьшения сил отталкивания. Увеличение пересыщения в аппарате может способствовать также появлению вторичного зародышеобразования, так как мелкие осколки, возникшие при истирании, дроблении кристаллов приобретают способность к росту (выживают). [c.10]

    Все рассмотренные случаи свидетельствуют о том, что константу агрегации (коагуляции) нужно искать в виде К=2"ХГг Определим структуру движущих сил вторичного зародышеобразования. Из гипотезы аддитивности основных термодинамических характеристик по массам фаз следует к [c.100]

    Система уравнений (2.29) — (2.32) получена для случая, когда в аппарате не происходит вторичного зародышеобразования и агрегации кристаллов. Для данного случая начальные и граничные условия имеют вид [c.158]

    Проведенные исследования подтверждают гипотезы, положенные в основу модели кристаллизации (3.250) —(3.254), (3.255) — (3.257) 1) рост кристаллов происходит в диффузионной области из-за сильного влияния перемешивания 2) вторичные центры образуются за счет истирания кристаллов несущей фазы в зависимости от критерия Вебера 3) явления дробления и агрегации отсутствуют. [c.314]

    Следует заметить, что взаимодействие частиц на больших расстояниях, характеризуемое наличием на потенциальной кривой неглубокого отрицательного минимума, до сих пор не имеет специального названия. Ученые называют этО взаимодействие по разному дальней коагуляцией, коагуляцией во вторичном минимуме, дальней агрегацией, флокуляцией. В дальнейшем мы будем пользоваться всеми этими терминами за исключением флокуляции, поскольку термин флокуляция имеет чисто описательный характер (образование хлопьев, фло-кул) и не зависит от того, происходит ли она в результате истинной коагуляции или дальней агрегации. Термином коагуляция будем обозначать все виды агрегации частиц, начиная от коалесценции и непосредственного слипания частиц и кончая дальней агрегацией. Наконец, под истинной коагуляцией будем-понимать непосредственный физический контакт между частицами. [c.279]

    При прибавлении к системе индифферентного электролита происходит сжатие диффузной части двойного электрического слоя и толщина ионных атмосфер уменьшается. Одновременно также в результате сжатия ионного слоя увеличивается глубина вторичного потенциального минимума, что приводит к возрастанию вероятности дальней агрегации. Изменение формы потенциальных кривых парного взаимодействия частиц при увеличении содержания индифферентных электролитов в системе показано на рис. IX, 13. [c.293]


    Кривые 2 относятся к коагуляции адсорбционно насыщенных латексов со сферическими частицами. Кривые 5 характеризуют коагуляцию адсорбционно насыщенных латексов, первичные сферические частицы которых агрегированы во вторичные более крупные частицы различных неправильных форм. Наличием с самого начала более крупных, неправильных по форме агрегатов объясняется, видимо, то обстоятельство, что у таких латексов с возникновением коагуляционного процесса после индукционного периода сразу же падает мутность без первоначального подъема, характерного для начальной стадии агрегации первичных сферических частиц. [c.22]

    НОСТЬ латекса, тем сильнее выражена агрегация частиц. Таким образом, можно предполагать, что агрегация происходит преимущественно по свободным участкам поверхности и завершается образованием вторичных частиц и агрегатов, обладающих насыщенными адсорбционными слоями эмульгатора. Чтобы наступила коалесценция и явная коагуляция, требуются более жесткие условия замораживания. Но если такие условия созданы, то явной коагуляции и в этом случае предшествует первичная агрегация частиц. [c.33]

    Для анализа полученных данных в свете теории ДЛФО нами были проведены расчеты энергии взаимодействия частиц Si02 в приближении взаимодействия двух сфер, а также двух плоских поверхностей [509]. Поскольку концентрация ЦТАБ была сравнительно небольшой, в расчетах допускалось, что различием между потенциалом и -потенциалом можно пренебречь. Агрегативно устойчивый в воде золь Si02 при введении в систему ЦТАБ (концентрация 1-10 моль/л) начинает агрегировать. При концентрации ЦТАБ 1-10 моль/л -потенциал частиц Si02 резко изменяется (до —5,3 мВ по сравнению с —62 мВ в воде), а степень агрегации частиц возрастает до 2,2, Из расчета энергии взаимодействия следует, что при данной т концентрации ЦТАБ высота энергетического барьера составляет около 6 кТ, а вторичный минимум крайне мал (доли кТ). Кроме того, его положению отвечает расстояние 800 нм, что также делает практически не-  [c.177]

    Первичные частицы кристаллического строения в результате агрегации образуют более крупные вторичные частицы псевдоаморфного строения. [c.15]

    Книга состоит из четырех глав. В первой главе, посвященной качественному анализу структуры процесса массовой кристаллизации как сложной ФХС, вскрываются особенности данной ФХС как на языке смысловых, лингвистических построений, так и на языке точных математических формулировок, причем в последнем случае обсуждаются два подхода — феноменологический (детерминированный) и стохастический. На уровне детерминированного подхода формулируется обобщенная система уравнений термогидромеханики полидисперсной смеси с произвольной функцией распределения кристаллов по размерам с учетом роста, растворения, зародышеобразования, агрегации и дробления кристаллов. Особое внимание уделено описанию процесса вторичного зародышеобразования. На основе термодинамического подхода получены теоретические зависимости для структуры движущих сил вторичного зародышеобразования при бесконтактном и контактном зародышеобразовании. Стохастический подход представлен методом пространственного осреднения, развитого в последние годы в механике гетерогенных сред, а также методами фазового пространства и стохастических ансамблей для описания стохастических свойств процессов массовой кристаллизации. На основе метода пространственного осреднения получено уравнение типа Колмогорова— Фоккера — Планка с коэффициентом диффузии, учитываю- [c.5]

    Особенно интересные наблюдения проведены на эмульсиях со значениями и-потенциала 20 мвили —20 мв. Обнаружено почти постоянное соотношение одиночных и двойных капель, что указывает на обратимое равновесие между флокуляцией п диспергированием. Авторы считают, что этп результаты соответствуют теории ДЛВО. Для капель диаметром 2 мкм п -ф 20 мв энергетический барьер должен быть таким высоким, чтобы предотвратить соприкосновение, а вторичный минимум — неглубоким ( —8 кГ), чтобы вызвать обратимую агрегацию (см. рис. П.З). Кроме того, установлено, что соотношение дуплетов увеличивалось примерно на вычисленную величину нри изменении -потенциала от —20 до —23 мв. [c.116]

    Следует помнить, что уравненне Рэлея справедливо для очень разбавленных растворов, так как оно не учитывает вторичного рассеяния света частицами. Поэтому стандартный раствор должен быть сильно разбавленным. Исследуемый раствор также приходится разбавлять примерно до такой гке концентрации. При разбавлении коллоидной системы может произойти десорбция стабилизатора, что приведет к нарушению агрегативной устойчивости системы и к агрегации частиц, т. е. к изменению их размера. В этом случае измерение концентрации по светорассеянню невозможно. Чтобы избежать агрегации, разбавление коллорщпой системы проводят раствором стабилизатора. [c.29]

    Аналогичный метод использован и для изучения влияния концентрации дисперсной фазы лиофобных золей на их устойчивость, при различных концентрациях электролитов. Учет коллективного-взаимодействия коллоидных частиц позволяет объяснить существенные различия в закономерностях коагуляции электролитами разбавленных и нарушении устойчивости концентрированных лиофобных золей. В частности, было найдено, что при постоянной объемной концентрации дисперсной фазы устойчивость концентри рованных систем с увеличением размера частиц проходит через максимум. Этот вывод был экспериментально подтвержден Отте-вилем 111оу. Если же численная концентрация частиц остается неизменной, то устойчивость системы с увеличением размера частиц, снижается монотонно. Одновременно для больших сферических частиц и толстых пластинчатых частиц характерно наличие глубокого вторичного минимума на потенциальных кривых, вследствие чего процессы дальней агрегации должны быть особенно распространены в низкодисперсных системах. [c.296]


    ГИСТ0НЫ (от греч. Mstos-ткань), группа сильноосновных простых белков (р/ 9,5-12,0), содержащихся в ядрах клеток животных и растений. Различают пять осн. групп Г., каждую из к-рых составляют белки с близкими св-вами, выделенные из разных организмов. Группы Н2А, Н2В, НЗ и Н4 имеют мол, м. от 1 до 14 тыс. (т. наз. низко молекулярные Г.), группа Н1 -ок. 22 тыс. Для первичной структуры Г. характерно высокое содержание остатков лизина и аргинина, а также отсутствие триптофана. Г. одной и той же группы, полученные из разл. источников, имеют очень сходную первичную структуру. Так, Г. из тимуса быка и проростков гороха, относящиеся к группе Н4, отличаются расположением только двух аминокислотных остатков. Во вторичной структуре преобладают а-спирали Р-стоуктура появляется только при необратимой агрегации Г. Третичную структуру образует глобула (80-100 аминокислотных остатков), содержащая гл. обр. гидрофобные и кислые аминокислотные остатки N-концевая (10-25 остатков), а в ряде случаев и С-концевая часть (5-10 остатков) не структурированы, подвижны и обогащены аргинином и особенно лизином. Группа Н1 отличается от др. групп значительно более длинным (ок. 100 остатков) подвижным N-концом. [c.574]

    Увеличение концентрации ЦТАБ в системе после достижения изоэлектрического состояния (>2,5-10 М) приводит к росту положительных значений электрокинетического потенциала. Однако степень агрегации частиц (вплоть до концентрации ЦТАБ 10 М) вновь начинает расти, что может быть обусловлено разрушением ГС при появлении заряда на поверхности частиц, а также некоторой гидрофобизацией поверхности при адсорбции ПАВ. Гидрофилизация поверхности частиц ЗЮг за счет двуслойной адсорбции ЦТАБ [512] маловероятна вследствие низкой степени покрытия ЗЮг ионами ЦТАБ вблизи изоэлектрической точки. Из расчета энергии взаимодействия сферических частиц при С=ЫО М следует, что коагуляция частиц во вторичном минимуме (доли кТ) невозможна. Она происходит в первичном минимуме при преодолении энергетического барьера. Положительная структурная составляющая расклинивающего давления, ограничивающая его глубину, может быть обусловлена как взаимодействием ГС воды на поверхности ЗЮг, так и взаимодействием адсорбционных слоев ПАВ.. Можно ожидать, что при данной концентрации степень покрытия поверхности кварца молекулами ПАВ близка к 20% [513]. Как видно из рис. 10.3, дальнейшее увеличение концентрации ЦТАБ вновь приводит к ее стабилизации (участок г), что может быть связано с образованием геми-мицелл на поверхности кварца, а также увеличением положительного значения -по-тенциала частиц ЗЮг. [c.179]

    Способ укладки пептидной цепи (образование спирали или -структуры) часто называют вторичной структурой белка. Дальнейшая укладка молекулы, основанная на бзаимодемствин групп, далеко отстоящих друг от друга вдоль цепи, приводит к формированию третичной структуры. Агрегация мономерных белковых субъединиц в оли-Ьомеры (гл. 4) определяет четвертичную структуру белка. [c.94]

    Хотя повышение pH и ионной силы или присутствие липидов способствует агрегации всех глиадинов [10], образование фибрилл наблюдалось только у некоторых а-глиадинов. Ввиду этого возможно, что образование фибрилл вовлекает вторичные специфические взаимодействия, зависящие от конформации основных единиц [114]. Структура других глиадинов может препятствовать образованию фибрилл этого типа. К тому же иммунохими-ческое исследование глиадинов [28] показывает, что а-, р-, у- и ы-глиадины состоят из иммунологически различных белков, т. е. различных по своей третичной структуре. Различие антигенных структур недавно подтверждено методом ELISA [179]. Обнаружены различия в N-концевых последовательностях. Изучение структуры глиадинов с помощью трансмиссионной и сканирующей электронной микроскопии обнаруживает в них не определенную структуру, а аморфную совокупность [55, 142]. [c.198]

    Эта модель отличается от предшествующей тем, что в ней не предусмотрены ковалентные связи между субъединицами, а их ассоциации образованы только за счет вторичных связей (водородных, ионных и гидрофобных). Модель базируется на том, что явления обратимой агрегации а-глиадинов в микрофибриллах [114, 117] возможны также для субъединиц глютенинов, хотя они и не были обнаружены, и на образовании белковых фибрилл, наблюдаемых после гидратации фрагментов эндосперма пшеницы [14, 15]. [c.215]

    Как сообщили Радчевский и Рихтер [1286], подобный механизм неизбежно приводит к образованию вторичных сферических частиц диаметром 200 нм. Исследовался раствор чистого золя кремнезема, приготовленный гидролизом Si U с последующим удалением H l посредством электролиза. Очищенный прозрачный золь содержал около 0,5 % 510г и имел pH 6,8. Другими авторами показано [128в], что однородные пористые сферические частицы кремнезема диаметром до 1 мкм формируются подобным образом посредством агрегации первичных частиц размером менее 5 нм, полученных предварительно гидролизом этилсиликата в смеси вода—спирт—аммиак. [c.321]

    Гринберг и Синклер [155] исследовали полимеризацию кремнезема в области pH 7—12 в смешанных растворах ацетата аммония и метасиликата натрия с ирименением метода рассеяния света. К сожалению, раздельно не контролировались значение pH и концентрация электролита (ацетата натрия), так что невозможно было различить оказываемое ими порознь действие. Тем не менее исследование авторов представляется одним из немногих, в которых в основную реакцию включался рост содержащих воду пористых микрогелевых частиц размером 20—120 нм, получающихся в результате агрегации первичных частпц с диаметром порядка 3—4 нм. За этим ироцессом следовал вторичный процесс агрегации таких микрогелевы.ч частиц с формированием твердого геля. [c.372]

    Электронномикроскопические исследования водных суспензий бентонитовых глин в присутствии К-4 показали, что при малод содержании полимера он не влияет на форму и размер частиц кальциевой глины (табл. 28, рис. 58 а), для которой характерны более крупные и полные образования размером 1 мк [143—145]. Однако прибавление К-4, хотя его содержание в смеси очень мало (10- мг], вызывает увеличивающуюся с ростом содержания К-4 агрегацию частиц глины, в результате чего размер частиц вторичных образований в смесп Л Ь 2 доходит до 2 и более микрон (рис. 58 б). Для смесей 3 и 4 (особенно в смеси 4) содержание К-4 достаточно для того, чтобы стабилизировать частицы Са-бентонита (рис. 58 б). В этом случае очертания частиц становятся расплывчатыми, размеры меньшнмн, чем у исходного Са-бентонита. [c.85]

    Среди продуктов эндопероксидации вторичных ПГ необходимо отметить тромбоксаны и простациклины. Тромбоксаны образуются в тромбоцитах и после выхода в кровяное русло вызывают сужение кровеносных сосудов и агрегацию тромбоцитов. [c.391]

    Обычно мельчайшие частицы порошка — первичные частицы — слипаются друг с другом и образуют более или менее протяженные скопления, или вторичные частицы. В простейшем случае агрегация частиц происходит при комнатной температуре вследствие простого прилипания одной частицы к другой под действием молекулярных сил. Этот процесс ускоряется при повышении температуры и под действием давления. Иногда, в частности в неорганических окислах и солях, частицы склеиваются вместе благодаря адсорбированной воде, которая увеличивает подвижность ионов вблизи поверхности твердого тела. Кроме того, взвешенные частицы, сталкиваясь друг с другом в процессе броуновского движения, часто слипаются вместе, образуя выпадающие в осадок зерна. В качестве примера приведем ксеро-гели окиси железа и кремнезема. В скоплениях всех этих типов площадь поверхности меньше площади поверхности первоначальных частиц порошка или осадка на величину, равную площади мест контактов. Такие твердые тела также имеют поры, образованные зазорами между частицами, причем их объем часто составляет значительную долю полного объема (т. е. объема пространства, заключенного внутри гипотетической мембраны, натянутой па зерно). [c.10]

    Вопрос о возможности фиксации частиц на сравнительно далеких расстояниях, отвечающих координате вторичного минимума, впервые подробно рассмотрен Ефремовым и Нерпиным (284, 308—312]. Влияние электролитов на процесс дальней агрегации и зависимость физико-мехапических свойств систем, возникающих в результате его протекания, от концентрации и валентности противоионов в дисперсионной среде изучены в работах [313, 314]. Показано, что в отличие от соотношения = onst, установленного при исследовании коагуляции лиофобных коллоидов, в случае фиксации частиц относительно Друг друга на далеких расстояниях должно выполняться равенство = [c.51]


Смотреть страницы где упоминается термин Агрегация вторичная: [c.100]    [c.100]    [c.85]    [c.176]    [c.150]    [c.332]    [c.128]    [c.296]    [c.310]    [c.310]    [c.411]    [c.51]    [c.176]    [c.248]    [c.40]    [c.321]    [c.220]    [c.97]    [c.85]   
Дисперсионная полимеризация в органических средах (1979) -- [ c.157 , c.161 ]




ПОИСК





Смотрите так же термины и статьи:

Агрегация



© 2025 chem21.info Реклама на сайте