Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гликозиды дезоксисахаров

    В основе большинства важнейших цветных реакций на углеводы лежит, вероятно, реакция образования фурфурола (в присутствии кислых реагентов), оксиметилфурфурола и родственных соединений, которые конденсируются с фенолами или ароматическими аминами, образуя окрашенные продукты. Различные модификации этой основной реакции позволяют различать, с одной стороны, альдозы и кетозы, с другой стороны, пентозы и гексозы. Кроме того, некоторые специфические реакции позволяют определять остатки 2-дезоксисахаров в таких природных продуктах, как нуклеотиды и сердечные гликозиды. Некоторые общие реагенты (например, реактив Фелинга, трифенилтетразолийхлорид) и специфические реагенты (например, реактив Берфеда, кислый молиб-дат) позволяют различать восстанавливающие и невосстанавливающие сахара. Многие классические реакции послужили основой для разработки проявителей для бумажных хроматограмм (см. Блок [315]). Цветные реакции на различные углеводы приведены в табл. 1.3. [c.66]


    Гидролиз гликозидов 2-дезоксисахаров также происходит примерно в сто раз быстрее, чем гидролиз обычных гликозидов. 2-Дезоксисахара легко образуют и К-гликозиды, поэтому производные этого типа, такие, как, например, анилиды и толуидиды, применяются обычно для их идентификации. [c.254]

    Эта интересная закономерность важна для понимания тех особенностей, которые имеют место при гидролизе некоторых природных гликозидов, содержащих дезоксисахара. В частности, повышенной неустойчивостью гликозидов дезоксисахаров объясняется большая лабильность сердечных гликозидов, что привело в свое время к ошибкам при установлении их строения. [c.91]

    Гликозиды дезоксисахаров гидролизуются быстрее гликозидов исходных сахаров [182] однако среди причин, вызывающих [c.494]

    Дезоксисахара распространены в природе. Они являются почти обязательным компонентом природных сердечных гликозидов. Новым природным объектом, в котором богато представлены дезоксисахара, являются антибиотики, особенно недавно открытые и расшифрованные макролиды. Важным классом природных соединений, содержащих дезоксисахара, являются бактериальные сахара, а также дезоксирибонуклеиновые кислоты, в которых углеводной компонентой является дезокси-рибоза. Эти кислоты — важный природный полимер, определяющий генетические характеристики живых организмов. [c.116]

    В основных чертах химическое поведение дезоксисахаров не отличается от поведения обычных углеводов. Так, они образуют, хотя иногда и с большим трудом, обычные производные по карбонильной группе (гидразоны, оксимы, ацетали) и гидроксильным группам (простые и сложные эфиры, изопропилиденовые, бензилиденовые производные и т. д.). Однако в поведении дезоксисахаров, и особенно наиболее важных 2-дезоксисахаров, можно отметить и существенные особенности. Наиболее важны и интересны характерные отличия в поведении глико-зидных производных 2-дезоксисахаров. При обработке дезоксисахара спиртом в присутствии галоидоводородной кислоты образуется, - к обычно, разновесная смесь аномерных гликозидов. Например, [c.122]

    Углеводы относятся к полифункциональным соединениям, содержащим карбонильную и гидроксильные группы. В химическом отношении они представляют собой весьма лабильные вещества, склонные к множеству разнообразных превращений. Но, рассматривая многочисленные реакции углеводов, можно выделить три основных типа химических реакций моносахаридов. Это, во-первых, превращения карбонильной группы. К ним относятся реакции замещения, окисления и восстановления карбонильной группы, получение производных альдоновых кислот, раскрытие лактольного цикла. Второй ряд превращений затрагивает гидроксильные группы углеводов и связан с получением эфиров кислот, различных карбонильных производных, гликозидов, непредельных и дезоксисахаров, ангидридов ИТ. п. Третья группа реакций относится к изменению углеродного скелета молекулы углевода и включает его удлинение, укорочение, изомеризацию, получение С-производных, трансформацию углеводов в другие классы органических соединений. [c.5]


    Распространение в природе. Дезоксисахара широко распространены в природе. Они редко встречаются в свободном виде и обычно являются компонентами гликозидов, олиго- и полисахаридов. [c.253]

    Однако в ряде случаев проявляется сильное влияние аминогруппы на свойства моносахарида. Особенно ярко выражено влияние близко расположенной аминогруппы на свойства гликозидного гидроксила в 2-амино-2-дезоксисахарах. Так, при нагревании со спиртами в присутствии хлористого водорода, т. е. в типичных условиях получения гликозидов, 2-амино-2-дезоксисахара гликозидов не образуют Реакция в дан- [c.271]

    Дезоксисахара по своим химическим свойствам в целом сходны с обычными углеводами. Некоторые особенности характерны лишь для 2-дезоксисахаров, например они чрезвычайно легко дают О-гликозиды, [c.494]

    Дезоксиглюкоза обладает реакциями моносахаридов, но не дает озазона (вследствие отсутствия гидроксила у второго углеродного атома) и крайне легко осмоляется при действии щелочи. Она является представителем группы дезоксисахаров, к которым относятся, например, сахаристые компоненты сердечных гликозидов (см. том II). [c.673]

    Известно, что гликозиды дезоксисахаров, т. е. углеводов, лишенных -одной или нескольких гидроксильных групп, которые будут подробнее. рассмотрены ниже, менее устойчивы к гидролизу. Точнее, устойчивость гликозидной связи уменьшается с уменьишнием числа гидроксильных групп углеводной части. [c.91]

    Авторы расширили и дополнили второе издание Практикума , включив в него лабораторные работы, призванные помочь освоению ряда новых методов. Сюда относятся оксазолиновый синтез гликозаминидов, получение ортоэфиров углеводов, электрохимическое окисление сахаров, применение диазокетоз для наращивания углеродного скелета углеводов, новые способы синтеза С-гликозидов, дезоксисахаров. В Практикуме приведены примеры применения реакции Виттига с фосфоранами различных групп и некоторых других методов конденсации, в частности, синтеза Дебнера. [c.4]

    Строение сердечных гликозидов очень сложно. При гидролизе сердечного гликозида молекула последнего распадается на несколько молекул простых сахаров (специфичных для этих гликозидов дезоксисахаров — дигиток-созы и др., и широко распространенных, как глюкоза) и специфичный агликон стероидной природы, часто называемый генином. При гидролизе некоторых гликозидов, помимо сахаров и генинов, отщепляется также уксусная кислота. [c.475]

    Строение сердечных гликозидов очень сложно и, несмотря на многочисленные исследования, во всех деталях не выяснено ни для одного представителя этой группы веществ. Однако известно, что при гидролизе сердечного гликозида молекула последнего распадается на несколько молекул простых сахаров (специфичных для этих гликозидов дезоксисахаров — дигитоксозы и др., и широко распространенных, как глюкоза) и специфичный агликон стероидной природы, часто называемый генином. При гидролизе некоторых гликозидов, помимо сахаров и генинов, отщепляется также уксусная кислота. [c.519]

    ДЕЗОКСИСАХАРА, моносахариды, содержащие в молекуле Один или неск. атомов водорода вместо гидроксильных групп. Д. и их гликозиды менее устойчивы к действию к-т, чем обычные моносахариды и их гликозиды. Д.— структурные фрагменты мн. природных соед.— ДНК, полисахаридов, гликопротеинов, гликозидов, антибиотиков. Получ. гидрогенолизом галогендезокеисахаров, эиоксиироизводных или ненасыщ. производных сахаров. [c.149]

    Метод Хэдсона — Джексона. Этот просто п изящный метод определения конфигурации гликозидного центра в гликозиде, а следовательно и в соответствующем ему аномере моносахарида, основан на выделении продукта окисления гликозида йодной кислотой и определении величины вращения. При окислении йодной кислотой метилглико-зида и последующего окисления получающегося диальдегида бромной водой образуется двухосновная кислота, которая идентифицируется в виде бариевой или стронциевой соли. При окислении любого моносахарида (за исключением дезоксисахаров) может образоваться одна из четырех стереоизомерных кислот, конфигурация которых зависг1Т только от конфигурации у С(1) и С(5) (или С(4) у пентоз) и не зависит от конфигурации других С-атомов (С(2>, С(з> и С(4)) . а-О-гликозид и а-ь-гликозид дают одну пару антиподов, Р-О-и р-ь-гликозиды — другую пару антиподов, диастереомерную первой. Эти пары диастереомеров отличаются одна от другой физическими свойствами, в частности для а-О- и а-Ь-пары характерны бариевые соли, [5-0- и р-ь-пара дает характерные стронциевые соли. На основании этого исходный гликозид можно отнести либо к тому, либо к другому типу (см. схему на стр, 45). [c.44]

    Этот вывод имеет очень важное практическое значение. Ясно, что для моносахаридов, имеющих конфигурацию у С<2), подобную конфигурации у глюкозы, Р-гликозиды легко доступны, а синтез а-гликозидов представляет серьезную проблему. При противоположной конфигурации у С(2) (например, у маннозы) дело обстоит как раз наоборот. Наконец, в том случае, когда у <2j отсутствует заместитель, например, в 2-дезоксисахарах, направляющее влияние при обмене атома галоида отсутствует, и должна образоваться смесь обоих аномерных гликозидов. Следует отметить, что приведенное выше правило представляет собою несколько идеализированный результат реакции обмена галоида в ацил-гликозилгалогенидах. При практическом осуществлении синтеза гликозидов этим путем реакция часто сопровождается эпимеризацией образующегося гликозида у аномерных гликозидов с преобладанием более устойчивого. Эта эпиме-ризация особенно легко происходит в кислой среде, что может иметь место, например, при обработке реакционной смеси. [c.73]


    Природные гликозиды составляют весьма обширный класс соединений, которые наряду с обязательной углеводной структурной единицей содержат в качестве агликона самые различные радикалы. По количеству молекул моносахарида гликозиды можно разделить на монозиды,. биозиды, триозиды редко встречаются гликозиды, содержащие четыре и более молекул моносахарида. Из моносахаридов в состав гликозидов входит особенно часто глюкоза, реже встречаются соединения,, содержащие галактозу, маннозу, фруктозу. Относительно широко представлены гликозиды, содержащие дезоксисахара, например, рамнозу, фукозу и др. Хорошо известны также гликозиды, содержащие пентозы (арабинозу, ксилозу). Упомянутые выше нуклеотиды в качестве углеводной компоненты содержат рибозу и дезоксирибозу. Интересно отметить, что большинство природных гликозидов относятся к пирано-зидам и являются Р-аномерами. [c.95]

    При обработке ацетилгликозилбромида (I) цинком и уксусной кислотой образуется непредельное соединение (II), которое называется гликалем (соответственно глюкаль, галакталь, арабиналь и т. д.). Последний при гидратации в присутствии серной кислоты дает 2-дезокси-сахар, а при обработке спиртовым раствором хлористого водорода — гликозид соответствующего 2-дезоксисахара. Этот метод является наиболее удобным и часто применимым, но, естественно, годится только для синтеза 2-дезоксисахаров. [c.118]

    Для синтеза более сложных дезоксисахаров, таких, как дидезоксисахара, входящие в состав сердечных гликозидов, обычно используют комбинацию обоих приведенных выше методов. В качестве типичного примера можно привести синтез цимарозы (см. стр. 120). [c.119]

    Многие вопросы строения дезоксисахаров можно решить, исходя из данных окисления йодной кислотой. Как уже указывалось выше, образование при этом малондиальдегида и ацетальдегида может служить качественным указанием на присутствие дезоксисахара. С ло-мощью окисления йодной кислотой можно определить величину окисного кольца. Таким образом, для решения вопроса о строении дезоксисахаров метод используется так же, как для решения вопроса о строении обычных моносахаридов. В качестве важного примера использования этого метода можно привести определение размеров окисного кольца в производных 2-дезоксирибозы, которое в настоящее время широко применяется в химии нуклеотдиов. Ясно, что гликозид с пиранозным кольцом— метил-2-дезоксирибопиранозид ( XXV)—поглотит один моль йодной кислоты, не образуя при этом ни муравьиной киСлоты, ни фор- [c.121]

    Первый раздел включает цветные реакции, характерные для отдельных функциональных групп. Кроме того, некоторые классы природных соединений объединены по характерным для них цветным реакциям. Такая компоновка отражает либо какую-то определенную особенность строения, характерную для всех соединений данного класса (например, наличие остатка дезоксисахара в стероидных гликозидах и нуклеиновых кислотах), либо относится к молекуле в целом (например, реакции на стероидное ядро). Сводка ограничена пробирочными реакциями, при которых используется не более 1—2 мг вещества. Во многих случаях это количество может быть уменьшено без потери чувствительности. В частности, для экономии вещества во многих случаях можно с успехом применять капельные пробы по Файглю [198]. Достоверность любой цветной реакции резко повышается, если параллельно проводить в стандартных условиях реакцию с веществом, заведомо дающим эту же цветную реакцию, а также контрольную реакцию со смесью используемых реагентов. Цветные и некоторые другие характерные реакции на различные функциональные группировки суммированы в табл. 1.2. [c.51]

    Однако, в отличие от обычных моносахаридов, гликозидация здесь происходит крайне легко. Так, образование метилгликозида 2-дезоксиглюкозы заканчивается в течение 15 мин. и требует присутствия лишь 0,25% хлористого водорода. Вместе с тем и омыление гликозидов 2-дезоксисахаров происходит гораздо быстрее гидролиза обычных гликозидов. [c.122]

    Весьма серьезное обстоятельство, сильно осложняющее синтез производных 2-дезоксисахаров, связано с особенностями их ацилгалогени-дов, которые являются, как это указывалось ранее (стр. 70), главными исходными веществами для синтеза различных О- и К-гликозидов. Указанные ацил-2-дезоксигликозилгалогениды могут быть получены присоединением соответствующего галоидоводорода к ацетилированному гликалю. [c.122]

    Сердечные гликозиды, аа редкими исключениями, являются нейтральными соединениями. В то же время они чувствительны к действию как кислот, так и щелочей. Под влиянием кислот, даже таких слабых, как уксусная, отщепляются легко гидролизуемые 2-дезоксисахара, которые очень часто являются составными компонентами гликозидов. В щелочной же среде ттроисходит необратимая изомеризация карденолидов с образованием кардиотонически неактивных производных. [c.19]

    Получаемые таким способом ацилгелогениды отличаются неустойчивостью, и выделение их в чистом виде удалось лишь в одном-двух случаях поэтому работа с ними весьма затруднена. Вторая особенность, которая должна быть учтена при синтетическом использовании ацилгало-генидов, состоит в том, что при реакциях обмена атома галоида в этих производных отсутствует стерическая направленность, в результате чего образуется смесь а- и р-гликозидов. Эта особенность связана с отсутствием заместителя у соседнего С -атома, вследствие чего отсутствует его влияние ( эффект соучастия ) на стереохимию замещения, и получаются оба аномера. Это делает крайне затруднительным направленный синтез гликозидов 2-дезоксисахаров с заданной конфигурацией, соответствующей природным соединениям. [c.123]

    Более трудную проблему представляет собою синтез дезоксирибозидов. Трудности связаны главным образом с особенностями химического поведения 2-дезоксисахаров. Как указывалось в разделе, посвященном химии углеводов, 2-дезоксисахара отличаются пониженной устойчивостью сравнительно с обычны.ми моносахарида.ми эта меньшая устойчивость особенно сильно сказывается на соответствующих ацилгликозилгалогенидах, которые до самого последнего времени вообще не были получены в чистом виде. Дополнительная. трудность синтеза дезоксирибозидов связана с отсутствием функциональной группы у С(2) в дезоксисахаре. Это неизбежно должно привести при конденсации производных этих сахаров к образованию смеси аномерных N-гликозидов, так как направляющая стереохимический ход замещения ацетоксигруппа у (j) в данном случае отсутствует. [c.211]

    Антибиотики-антрациклины [23] обладают противомикробной (некоторые — противоопухолевой) активностью. По своей химической структуре они — гликозиды, хромофорная группа которых представлена антрациклинонами — веществами красного цвета, нерастворимыми в воде. Антрациклиноны соединены -С-О-С-гликозидной связью с амино- или дезоксисахарами. К группе антрациклинов относятся дауномицин, рубомицин, родомицины и другие антибиотики, образуемые некоторыми актиномицетами (табл. 3.17). [c.194]

    Гликозиды 2-амино-2-дезоксисахаров со свободной аминогруппой отличаются необычной стойкостью к гидролизу Этот факт связан с переходом аминогруппы в аммониевую форму электростатический эффект NHз-гpyппы затрудняет протонирование атома кислорода гликозидной группировки, с которым связан ее гидролиз. [c.273]

    Широкую известность получили так называемые сердечные гликозиды — соединения, способные стимулировать сердечную деятельность и тем самым представляющие интерес для медицины. Они встречаются в ряде видов растений, наиболее важными из которых ЯВ.1ЯЮТСЯ Sirophanthus и Digitalis. Типичным для сердечных гликозидов является присутствие дезоксисахара, который чаше всего присоединен к агликону. Структуры агликонов большинства сердечных гликозидов весьма сходны — они представляют собой сложные лактоны стероидной природы. [c.496]

    Основные научные работы посвящены биоорганической химии, теоретической органической химии п философским проблемам естествознания. Разработал методы синтеза С-гликозидов высших, разветвленных и дезоксисахаров. Использовал (1960-е) для синтеза С-производных реакцию Внттига, в которую вводил различные фос-фораны. Осуществил (1964—1965) синтез пирилиевых солей, сконденсированных с фурановым и тиофе-новым циклами. Открыл (1974) явление быстрой обратимой миграции углеродсодержащнх групп ацильного типа между нуклеофильными центрами в молекулах органических соединений (явление ацилотропии). Ввел представления теории информации в органичес- [c.188]


Смотреть страницы где упоминается термин Гликозиды дезоксисахаров: [c.227]    [c.29]    [c.117]    [c.4]    [c.254]    [c.272]    [c.493]    [c.494]    [c.409]    [c.411]    [c.261]   
Органическая химия. Т.2 (1970) -- [ c.559 ]

Органическая химия Углубленный курс Том 2 (1966) -- [ c.546 ]

Конформационный анализ (1969) -- [ c.494 ]




ПОИСК





Смотрите так же термины и статьи:

Гликозиды

Гликозиды гликозиды



© 2025 chem21.info Реклама на сайте