Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хелатные циклы

    Уже Mg + проявляет нормальную способность образовывать хелатные циклы с комплексонами. Однако установлено, что комплексонаты Са (т. е, хелатные комплексы с комплексонами) несколько более устойчивы, чем аналогичные по составу комплексонаты Mg [6, с. 382 и далее]. Например, для комплексона этилендиаминтетрауксусной кислоты (Н4А), получившего широчайшее практическое использование, получены следующие величины констант устойчивости комплексонатов состава М А2  [c.44]


    Хелатный эффект. Хелаты металлов (комплексы с замкнутыми циклами) устойчивее, чем комплексы с аналогичными монодентатными лигандами. Это явление получило название хелатного эффекта. Понятие хелатный эффект было введено Т. Шварценбахом в 1952 г. для того, чтобы отразить явление относительно более высокой устойчивости хелатов металлов по сравнению с аналогичными комплексами металлов с монодентатными лигандами или с хелатообразую-щими лигандами, но с меньшим числом хелатных циклов, содержаш,их те же донорные атомы. Так, аммиачные комплексы металлов менее устойчивы, чем комплексы этих металлов с этилендиамином, несмотря на то, что координированные частицы содержат одинаковое число атомов азота, присоединенных к металлу. Хелатный эффект подтверждается данными табл. 13.7. [c.258]

    Способность Ве40 (СНзСОО)б и р-дикетонатов Ве (И) сублимироваться при нагревании и растворяться в малополярных растворителях (экстракция) используется в технологии бериллия для его окончательной очистки и в химическом анализе. Важные для химии и технологии комплексы Ве с такими кислород-донорными лигандами, как СОз и ОН , а также с р--ионами уже упоминались (с. 36). Отметим в заключение, что Ве (II) в отличие от подавляющего большинства других катионов-комплексообразователей не дает с комплексонами хелатных соединений. Комплексоны, как известно [I, с. 164], представляют собой полиамино-поликарбоновые кислоты, обладают высокой (до 12) ден-татностью и содержат как кислород-, так и азот-донорные атомы. Наиболее прочные комплексы возникают, когда координируются и азот, и кислород с образованием пятичленных хелатных циклов (о хелат-ном эффекте см., например, [1]). [c.44]

    Однако сочетание хирального бидентатного фосфина и фосфит-ных лигандов может привести к нарушению такого перехода. Например, если алифатическая связь замещена и вследствие этого возник асимметрический атом углерода, хелатный цикл мо- [c.96]

    Картина значительно усложняется в случае полидентатных лигандов. Здесь нужно рассматривать такие дополнительные факторы, как размер цикла, его напряженность, число циклов, наличие заместителей в кольце или в сопряженной с кольцом системе. В основном, в ряду лигандов, если они имеют одинаковый донорный атом, образование хелатных циклов увеличивает устойчивость комплексов хелатный эффект). Это иллюстрируют данные табл. [c.293]

    Шестичленные циклы при отсутствии сопряжения также неплоски и не напряжены. Как и циклогексан, они могут существовать в конформациях твист-, ванна и кресло. При этом конформация ванны менее выгодна энергетически из-за взаимного отталкивания группировки, занимающей п-положение по отношению к металлу в хелатном цикле, и аксиального лиганда (рис. 3.9). С другой стороны, если возможно образование водородной связи между ними, это стабилизирует конформацию ванны. Как правило, шестичленные металлсодержащие циклы гораздо сильнее изогнуты, чем циклогексан, и менее устойчивы по сравнению со своими пятичленными аналогами. Это можно показать, сравнив константы у.п для реакций образования комплексов Си + и Ni + с этилендиамином (Еп) и триметилендиамином (Trim) по уравнению [c.123]


    Комплекс Число хелатных циклов 1е к  [c.293]

    При образовании комплексных соединений возможно, что атомы одних металлов связываются с молекулами нитрозо-нафтолов через атомы азота и кислорода, а других металлов—через атомы кислорода. Это приводит к образованию пятичленных и шестичленных хелатных циклов. [c.160]

    Для названия циклов, образуемых лигандами при координации около иона металла, введен термин хелат (что означает клешня или коготь ). Комплексы, содержащие хелатный цикл, стали называть хелатными соединениями. Разницу в устойчивости хелатных соединений и аналогичных соединений, не содержащих циклов, стали называть хелатным эффектом. Эти термины и понятия нашли очень широкое распространение в химической литературе. [c.384]

    Хелатные циклы орг. К. п. образованы орг. лигандами (напр,, X и Y в ф-ле П), к-рыми служат соед., содержащие [c.276]

    В большинстве случаев К. п.— окрашенные твердые в-ва не раств. или плохо раств. в обычных орг, р-рителях (несколько лучше — в ДМСО, ДМФА, сульфолане). Разрушаются при удалении металла прочность в ряду однотипных хелатных циклов уменьшается с увеличением размера цикла и уменьшением заряда атома металла. Наиб, устойчивы 5-п 6-членные циклы. [c.276]

    Такне р-ции могут протекать как по механизму 5 1, так и без разрыва связей лнгандов с центр, ионом, особенно в случае тригонально-бипирамидальных комплексов. Изомеризация- октаэдрич. К. с. происходит внутри- и межмолекулярно. В случае комплексов с хелатными лигандами изомеризация протекает по внутримол. механизму 5 1 с размыканием хелатного цикла и уменьшением к. ч. в интермедиате  [c.470]

    При прочих равных условиях лиганды, которые являются сильными льюисовыми основаниями (хорошими донорами электронов), дают наиболее устойчивые комплексы, однако многое также зависит и от других факторов, например от способности центрального иона и лигандов образовывать друг с другом двойные связи, а также от возможности замыкания хелатного цикла между полидентатными лигандами и центральным ионом. [c.413]

    Чтобы представить себе геометрию хелатного цикла, рассмотрим результаты расчета конфигурации комплекса Со + с этилен-диамином H2N H2NH2(Еп) упрощенным методом молекулярного силового поля (см. 2.6)  [c.122]

    Даже М (II), Са (II), 5г (II) образуют с комплексонами хелатные комплексы высокой устойчивости Ве (II) — исключение. Координация комплексона осуществляется только через кислород, как с обычной карбоновой кислотой. Азот не координируется, поэтому вклад хелатного эффекта в химическую связь отсутствует и комплекс оказывается непрочным, легко гидролизуется, превращаясь в полимерный малорастворимый гидроксокомплексонат. Причиной аномального поведения Ве (II) по отношению к комплексонам, по-видимому, является малый размер иона Ве2+ и вызываемый им высокий эффект поляризации. Ион Ве2+ слишком сильно стягивает на себя атомы кислорода комплексона это вызывает существенные искажения в пятичленных хелатных циклах и делает их замыкание энергетически невыгодным. [c.44]

    На схеме приведено это соединение, оно имеет хелатное строение, содержит три шестичленных хелатных цикла. Несмотря на свою принад-лел<ность к высокоспиновым ионным соединениям, трис-ацетилаце-тонат железа (III) ведет себя как соединение с молекулярной структурой, что объясняет его хорошую растворимость в малополярных растворителях и способность сублимироваться ( 150°С). Это связано с экранировкой ионной составляющей связи ион металла—лиганд углеводородной наружной сферой и возникающим в результате слабым органоподобным межмолекулярным взаимодействием. [c.133]

    Внутрикомплексные соединения (ВКС) — координационные соединения металлов с одинаковыми или различными бидентагными (обычно -органическими) ацидолигандами, связанными с одним и тем же атомом металла-комплексообразователя через одну отрицательно заряженную и одну нейтральную донорные группы с образованием одинаковых или различных внутренних металлоциклов хелатных циклов), не содержащие внешнесферных ионов и являющиеся комплексами-неэлектролитами. Примером ВКС могут служить глицинат меди(П) я оксихинолииат цинка  [c.199]

    Максимальная дентатность полностью депротонированных ЭДТУК и ЭДТА равна, как указывалось в разделе 7.1, шести, т. е. этот лиганд может занимать до шести координационных мест во внутренней координационной сфере, образуя координационные связи через оба атома азота и через четыре карбоксильные группы, отщепившие протоны. При этом возникают несколько хелатных циклов, вследствие чего образующиеся комплексы металлов обладают высокой устойчивостью, [c.204]

    Конфигурацию основного продукта альдольной конденсаухии можно предсказать при рассмотрении структуры цинкового хелата. Основным ггродуктом является такой, которому соответствует максимальное число экваториальных заместителей в хелатном цикле [9]. [c.45]

    Объемистые группы Н понижают устойчивость енольной формы, препятствуя созданию плоского хелатного цикла. [c.128]

    ИРИДИЙОРГАНИЧЕСКИЕ СОЕДИНЁНИЯ, содержат связь Ir—с. В хим. св-вах И. с. наблюдаются сходства и различия со св-вами кобальт- и родийорг. соединений. Степени окисления Ir в И. с. от — 1 до + 5, координац. числа обычио 4-7. Связи металл - углерод, как правило, более прочны, чем в соед. Со и Rh, что приводит к большей устойчивости И с. Переходы между соед. Ir, отличающимися степенями окисления, координац. числами Ir и (или) природой лигандов, относительно затруднены по этой причине И. с. не находят такого широкого применения в катализе, как орг. соед. Со и Rh. Для 1г, особенно в степени окисления 3, весьма характерны соед. с одной или двумя а-связями 1г—С, входящими в четырех- или пятичленный хелатный цикл, как, напр., в соед. I. [c.273]


    В водных р-рах с катионами (М) переходных d- и /-элементов, щел.-зем. н нек-рых щелочных металлов К. (L) образуют устойчивые внутрикомплексные соед - комплексонаты разл состава моноядерные кислые (протонированные) MH L, средние (нормальные) ML и гидроксокомплексы M(OH),L би- и полиядерные MjL н M L ди- и трикомплек-сонаты MLj, ML3. При наличии в системе неск. разл. катионов и лигандов возможно присутствие гетероядерных М,МХ, разнолигандных ML L и более сложных по составу комплексонатов (напр, М,М ,Ь Ь ), в т. ч. полимерных Высокая устойчивость комплексонатов объясняется тем, что при их образовании замыкаются два, три или более хелатных цикла (металлоцикла), как, напр, в случае комплекса Си с динатриевой солью этилендиаминтетрауксусной к-ты [c.440]

    Комплексы хелатообразующих реагентов по сравнению с комплексами их монодентатных аналогов обладают повыш. устойчивостью (т. наз. хелатный эффект), напр, комплексы этилендиамина устойчивее, чем аммиака, причем устойчивость хелатного цикла зависит от числа атомов в нем. Для лигандов, сравнимых по основности, повышение двоссвязности в хелатном цикле приводит к повышению стабильности комплекса, напр, комплексы ацетилацетоната Си (XVII) более стабильны, чем комплексы Си с салициловым альдегидом (XVIII). Присоединение объемного заместителя к донорному атому нли вблизи него, напр, замена атома Н иа алкильную фуппу, приводит под влиянием стерич. факторов к уменьшению стабильности комплекса, напротив, введение алкильных групп в др. положения, вследствие увеличения основности лигаидов, повышает стабильность комплексов. Стерич. эффекты благоприятствуют образованию транс-изомеров. [c.470]

    Внутримол. и реже межмол. М. с образованием хелатного цикла, содержащего ст-связь металл-углерод, наз. циклометаллированием. Последнее осуществляется при взаимод. солей и комплексов металлов с циклич. соед., имеющими электронодонорный заместитель. Циклометаллирование фенильных групп наз. ортометаллированием, поскольку в образующемся металлоорг. соед. металл связан ст-связью с о то-углеродным атомом кольца. Напр., введение атома Pd в азобензол  [c.40]

    X., в к-рых при замыкании хелатного цикла лигавд и л зует протон-содержащую и нейтральную электронодон Фуппы и формально связан с центральным атомом ком тной и донорно-акцепторной связью, наз. внутрикс лексными соединениями (внутренние комплекс соли), напр, ацетилацетонаты ф-л I и П. [c.224]

    Предполагается, что промежуточный т)3-ацилоксивинил-карбеновый комплекс железа (4) образуется в результате ацилирования атома кислорода акрилоильной группы. Последующая координация карбонильной группы эфира енола может вызывать последующее внедрение карбонильной группы в связь СН2 Ре. Первоначально образующийся нестабильный ненасыщенный комплекс (5) далее атакуется ионом иода с образованием конечного аддукта (3). Возможность первичной атаки атома железа ионом галогена исключается, поскольку внутримолекулярная координация эфиров енолов с образованием пятичленного хелатного цикла будет протекать намного быстрее, чем процесс координации с ионом галогена. [c.44]

    Щелочные катионы Li+ и Na+ образуют с ИДА нормальные комплексонаты ML только при рН>9. Соответствующие значения Ig/ ML составляют 1,20 и 0,61 при 20 °С и ц = 0,1 [182]. Уже при рН<10 эти комплексы протонируются и легко разрушаются. Протон присоединяется к атому азота, что подтверждается как потенциометрическими, так и рентгеноструктурным исследованиями кристаллической соли НЬНз( (1а)2 [204], показавшими, что обе молекулы ИДА в дикомплексе находятся в цвиттер-ионной форме. Следует, однако, отметить, что одна из них все же образует малопрочный 8-членный хелатный цикл, замыкаемый ионом Rb+. Рубидий имеет к. ч. 9, координируя атомы кислорода карбоксильных групп нескольких лигандов. [c.107]

    Таким образом, существование хелатных циклов с участием протона косвенным образом подтверждено не только для твердой фазы, но и для водных растворов ЭДТА [c.127]

    Помимо склонности к формированию хелатных циклов важной отличительной чертой молекулы ЭДТА как хелатирующего агента является высокая гибкость как во взаимном расположении этилендиаминного и глицинатного фрагментов, так и в конформации каждого из них в отдельности Наконец, еще одной особенностью, выявленной в результате рентгеноструктурных [c.129]


Смотреть страницы где упоминается термин Хелатные циклы: [c.97]    [c.100]    [c.294]    [c.80]    [c.109]    [c.71]    [c.200]    [c.202]    [c.56]    [c.269]    [c.1535]    [c.57]    [c.224]    [c.225]    [c.225]    [c.225]    [c.207]    [c.120]    [c.117]    [c.132]    [c.142]   
Современная химия координационных соединений (1963) -- [ c.0 ]

Экстракция внутрикомплексных соединений (1968) -- [ c.44 ]




ПОИСК







© 2025 chem21.info Реклама на сайте