Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Непредельные спирты, восстановление окисление

    Как видно из уравнения, промежуточным продуктом является непредельный спирт (виниловый спирт). Спирты, у которых группа ОН находится при углероде с двойной связью, неустойчивы, водород гидроксильной группы переходит к соседнему атому углерода (показано стрелкой), в результате чего образуется устойчивое соединение — альдегид. Эта реакция получила название реакции Куче-рова в честь русского ученого М. Г. Кучерова, открывшего ее в 1881 г. Этой реакцией в промышленности из ацетилена получают уксусный альдегид, а из него при восстановлении — этиловый спирт (а), при окислении — уксусную кислоту (б)  [c.351]


    С) или Ы-хлорсукцинимидом используют для окисления первичных и вторичных спиртов в карбонильные соед, а комплексы с бораном-для гидроборирования и восстановления непредельных соединений. [c.64]

    В меркаптанах атом водорода тиольной группы способен замещаться на металл с образованием меркаптидов кислотные свойства меркаптанов выражены сильнее, чем у спиртов. При взаимодействии с сероводородом меркаптиды вновь переходят в меркаптаны. При окислении даже в сравнительно мягких условиях меркаптаны количественно переходят в дисульфиды более глубокое окисление приводит к образованию сульфокислот и серной кислоты [82]. При восстановлении меркаптаны образуют соответствующий насыщенный углеводород. При термическом разложении алифатических меркаптанов образуются непредельные углеводороды ароматические меркаптаны разлагаются труднее, с образованием некоторого количества ароматических углеводородов и сульфидов [83]. Кроме основных химических реакций, упомянутых выше, меркаптаны способны к образованию различных солей и комплексных соединений [83]. [c.29]

    Большинство выводов относительно механизма этой реакции базируется на результатах исследования состава продуктов. Имеющиеся кинетические данные относятся в основном только к реакторам интегрального типа, в которых степени нревращения слишком велики, чтобы на основе таких данных можно было провести кинетический анализ этой сложной реакции. Обширная информация была получена в результате проведения следующих опытов в поток исходных веществ вводили различные добавки, например предельные и непредельные углеводороды и спирты, а затем определяли, какие превращения претерпевают эти добавки. Введенная газообразная добавка может появляться в продуктах реакции в неизмененном виде, в восстановленном или окисленном состоянии или же может входить в состав продуктов реакции. Включение добавки в молекулу продукта реакции показывает, что эта добавка инициирует рост углеводородных цепей или что она вводится в молекулу вследствие какого-то процесса конденсации или полимеризации. Путем соответствующей метки молекул (например, с помощью радиоактивных изотопов) можно в принципе решить, в каком месте молекулы начинается рост цепи. [c.349]

    Как видно из схемы, вначале образуется непредельный виниловый спирт, который очень неустойчив и быстро изомеризуется в уксусный альдегид. Путем окисления уксусного альдегида можно получить уксусную кислоту, а путем восстановления водородом— этиловый спирт. [c.67]


    Окисление спиртов. Образование альдегидов и кетонов. В органической химии реакцией окисления называют такую реакцию, которая приводит либо к увеличению числа атомов кислорода в молекуле, либо к потере атомов водорода. Реакцией восстановления называется такая реакция, в которой молекула либо приобретает водород (например, гидрирование непредельных углеводородов), либо теряет кислород. [c.205]

    Существуют различные способы получения ненасыщенных спиртов, такие как гидратация диеновых углеводородов [Пат, 53147013 Япония, 19781, эпоксидирование диеновых углеводородов с последующим их восстановлением [Пат. 1542975 Вели кобритания, 1978], восстановление эфиров непредельных киС лот, окисление диеновых углеводородов [Пат. 3887627 США, 1975]. [c.196]

    К окислительно-восстановительным реакциям образования альдегидов и кетоиов можно причислить превращения непасыщенн ых моногалоидиых и предельных дигалоидных производных этиленовых углеводородов, а также моиогалоидгидринов а-гликолей. Как будет видно из дальнейшего изложения, роль промежуточных продуктов при этих превращениях в карбонильные соединения многими авторами приписывалась непредельным спиртам и а-окисям. Изомеризацию непредельных спиртов и а-окисей г. альдегиды и кетоны следует отнести к типичным реакциям одновременного окисления-восстановления. [c.171]

    Строение аллилового спирта вытекает, с одной стороны, из его не-иасыщенности, находящей свое выражение, наиример, в сиособностн этого соединения присоединять два атома галоида или два атома водорода с другой стороны, аллиловый спирт может быть окислен до непредельного альдегида (акролеина) и непредельной кислоты (акриловой кислоты), что доказывает наличие первичной спиртовой группы СН2ОН.. Каталитическое восстановление аллилового спирта водородом [c.142]

    КРЕМНЕВОДОРОДЫ (силаны) — соединения кремния с водородом. Предельные К-— силаны, аналоги предельных углеводородов, общей формулы 51лН2 21 предполагают, что существуют и непредельные К.— силены, аналоги этиленовых углеводородов, и силины — аналоги ацетиленовых углеводородов. К. отличаются неустойчивостью силано-вых цепей —31—31—. Плотность, температуры плавления и кипения К. выше, чем у соответствующих углеводородов. Низшие К.— газы с неприятным запахом высшие — летучие ядовитые жидкости с еще более неприятным запахом. Силаны растворяются в спирте, бензине, сероуглероде. Характерным свойством силанов является их чрезвычайно легкое окисление для некоторых силанов реакция окисления протекает с сильным взрывом. Если в закрытые сосуды с раствором силана в сероуглероде попадает воздух, происходит взрыв. Силаны — хорошие восстановители, быстро гидролизуются. Силаны получают разложением силицидов металлов кислотами или щелочами, восстановлением галогеносиланов гидридами или водородом и другими методами. [c.138]

    Интересно отметить, что содержание серосодержащих соединений в добываемой нефти изменяется неодинаково. Так, по некоторым скважинам при росте содержания общей серы содержание сульфокислот имеет низкие значения (меньшие, чем для скважин, не реагирующих на закачку серной кислоты). Очевидно, сульфокислоты, изначально получаемые при сульфировании компонентов нефти, способны претерпевать различные химические превращения. Например, возможно биогенное восстановление до сероводорода кроме того, известны процессы окисления сероорганики (меркаптанов) растворенным в воде кислородом и УОБ. Биохимические реакции окисления-восстановления приводят к частичной перегруппировке атомов и появлению новых соединений. В процессах биогенного окисления углеводороды разрушаются последовательно до непредельных соединений, спиртов, альдегидов, кето-нов, карбоновых кислот. Взаимодействие сероводорода со спиртами, альдегидами, кетонами катализируется кислотами, например, серной кислотой. В этой связи серная кислота, закачанная в пласты с целью повышения нефтеотдачи, одновременно явилась как источником сульфат-иона, так и катализатором процесса осернения нефти. [c.125]

    Строение скелета галоидпроизводного можно определить, получив из него его родоначальный углеводород. Восстановление галоидпроизводных до углеводорода осуществляется действием магния в эфире и последующим гидролизом магнийорганического соединения или (в случае нолигалоид-производных) действием иодистого водорода при нагревании в запаянной трубке. Если галоидцроизводное имело два атома галоида, расположенные у соседних атомов углерода, магний отщепляет оба атома галоида и оба углерода соединяются двойной связью. Ее местоположение устанавливается окислением образовавшегося непредельного соединения, сопровождающимся разрывом цепи по месту двойной связи (такие реакции будут рассмотрены в разделе олефинов). В других случаях галоид-производное подвергают гидролизу моногалоидпроизводное превращается при этом в спирт, дигалоидпроизводное в двухатомный спирт (гликоль) или, если оба галоида находятся у одного углерода, в оксосоединение (кетон или альдегид). Все эти соединения легко отличить по их реакциям. Местоположение гидроксильной группы (ОН) в этих соединениях или карбонильной группы (СО) устанавливают путем окисления в кислоты (эти реакции будут рассмотрены при спиртах, альдегидах и кетонах). [c.84]


    Получ. алиф. А. (в т. ч. непредельные) — дегидрированием спиртов, окислением олефинов, гидратацией ацетилена (Кучерова реакция), А. Сз—Си — оксосинтезом аром. А.— окислением метилбензолов, омылением бензальгалсн ени-дов, восстановлением хлорангидридов к-т (Розенмунда реакция), гидролизом четвертичных солей уротропина (см. Соммле реакции), формилированием (Гаттермана — Коха синтез). Нек-рые А. выделяют из растит, сырья. Примен. в синтезе полимеров (напр., полиформальдегида, поливинил-ацеталей, феноло-, меламино- и мочевино-альдегидных смол), карбоновых к-т, аминов, спиртов, диолов в произ-ве пестицидов, ВВ, лек. и душистых в-в, красителей некфые А.— пестициды, душистые в-ва. См., напр.., Акролеин, Аце-тальдегид, Бензальдегид, н-Масляный альдегид. Формальдегид, фурфурол, Хлораль. [c.27]

    Суммированы основные работы за 1965—1970 гг. по новым реакциям электрохимического синтеза органических соединений и новым идеям в области интенсификации процессов электросинтеза. Рассмотрены реакции анодного окисления углеводородов, спиртов, альдегидов, кетонов, карбоновых кислот и соединений других классов, реакции анодного замещения и присоединения — галоидирование, цианирование, нитрование, гидроксилирование, алкоксилирование, сульфирование, карбоксилирование, алкилирование и др. Приведены сведения об образовании элементоорганических соединений при анодных и катодных процессах. Рассмотрены катодные реакции восстановления без изменения углеродного скелета — восстановление непредельных ароматических, карбонильных, нитро- и других соединений с кратными связями, образование кратных связей при восстановлении, катодное удаление заместителей, а также реакции гидродимеризации и сочетания, замыкания, раскрытия, расширения и сушения циклов, в том числе гетероциклов. Рассмотрены пути повышения плотности тока, увеличения поверхности электродов, совмещение анодных и катодных процессов электросинтеза, применение катализаторов — переносчиков, пути снижения расхода электроэнергии и потерь веществ через диафрагмы. Описаны конструкции наиболее оригинальных новых электролизеров. Таблиц 2, Иллюстраций 10, Бйбл, 526 назв. [c.291]

    Реакция расширения цикла по Демьянову может стать существенной стадией в превращении циклического спирта в его циклический гомолог в сочетании с одним из многих методов получения аминометильного ироизводного из соответствующего спирта. Казавшийся бы очевидным путь через циклоалкилгало-геиид и нитрил с последующим восстановлением обычно не применяется, так как при реакции циклоалкилгалогенида с цианистой солью нитрил обычно получается с плохим выходом. Другим путем является получение нитрила через реактив Гриньяра и карбоновую кислоту. Еще один способ, который часто обладает определенными преимуществами, состоит в окислении спирта до кетона с последующим получением циангидрина, дегидратации последнего и восстановлении [17]. Во многих случаях можно непосредственно восстановить циангидрин, после чего применяют реакцию расширения цикла ио Тиффено — Демьянову. Непредельные нитрилы можно успешно восстанавливать или путем каталитической гидрогенизации [17], или натрием и спиртом [17, 51]. Несколько более длинный путь состоит в применении реакции Реформатского [64] с последующим восстановлением до циклоалкилукеусной кислоты и превращением карбоксильной группы в аминогруппу [65] [c.181]

    Общими методами синтеза любых К., имеющими, однако, меньшее значенне, являются окисление кето-спиртов и озоцолиз непредельных кетонов либо соответствующих диолефинов. К. вступают в реакции, характерные для альдегидов п кетонов, примем В зависимости от реагентов и условий реакции в ней участвует либо только альдегидная группировка, либо и альдегидная, и кетонная. К таким реакциям относятся окисление, восстановление, взаимодействие с металлооргаиич. соединениями, получение моно- и диоксимов, гидразоиов, 2,4-динитрофенилгид-разонов, семикарбазонов и т. д. [c.276]

    Попытка Сойера [7] перейти путем экстраполяции скорости распада от температур 450—500° к температуре 150° оказалась несостоятельной, так как при изменении температуры меняется направление процесса. После открытия Бастином [8] и Гинзбург-Карагичевой [9] бактерий в в нефти и нефтяных водах значительное развитие получили взгляды на решающую роль бактериальных процессов нефтеобразования. Как показала Родионова [10], в результате жизнедеятельности бактерий наблюдаются омыление жиров, переход образовавшихся жирных кислот в непредельные, распад высших жирных кислот с образованием низших, полимеризация жирных кислот и рост количества неомыляемых. Под действием бактерий происходят также гидролиз целлюлозы, распад глюкозы до низших спиртов и жирных кислот, окисление углеводородов. В работах Цобелл [И—13] и Янковского указывается на возможность образования под действием десульфирующих бактерий углеводородов алифатического ряда (с числом атомов углерода от 10 до 25) из жирных кислот. В работах Архангельского [14], Порфирьева [15] и других прои -хождение нефти объясняется возможностью образования нефти под действием бактерий. Однако эти работы не затрагивают основных реакций образования составляющих нефть продуктов — крекинга углеводородов, восстановления непредельных соединений, гидроксильных, карбонильных и карбоксильных групп, и одни бактериальные процессы явно недостаточны для утверждений об их решающей роли в нефтеобразовании. [c.261]


Смотреть страницы где упоминается термин Непредельные спирты, восстановление окисление: [c.11]    [c.187]    [c.170]    [c.32]    [c.27]    [c.181]    [c.226]    [c.201]    [c.102]    [c.500]    [c.236]    [c.354]    [c.276]    [c.306]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.900 , c.907 ]




ПОИСК





Смотрите так же термины и статьи:

Окисление спиртов

Спирты непредельные

окисление—восстановление



© 2024 chem21.info Реклама на сайте