Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Щелочные и щелочноземельные элементы

    К а-элементам относятся водород, гелий, щелочные и щелочноземельные элементы, а также бериллий и магний. Водород и гелий существенно отличаются по своим физическим и химическим свойствам друг от друга и от остальных з-элементов. Это связано с резким отличием электронного строения их атомов от электронного строения атомов остальных -элементов. Свойства водорода удобнее обсуждать при изучении химии р-элементов УПА-подгруппы, а гелия [c.379]


    Атомные и ионные радиусы элементов главной подгруппы II группы значительно меньше радиусов соседних щелочных металлов. Это связано с большим зарядом и полным заполнением внешних электронных 8-слоев щелочноземельных металлов. Сравнительные характеристики щелочных и щелочноземельных элементов даны в таблице 29. Физические свойства щелочноземельных металлов приведены в таблице 31. [c.146]

    Перхлорат натрия по растворимости в воде и органических растворителях отличается от перхлоратов остальных щелочных и щелочноземельных элементов (табл. 14). [c.18]

    В практике атомно-абсорбционного анализа наибольшее применение получили два пламени воздушно-ацетиленовое и пламя оксида азота (I) с ацетиленом. Первый тип пламени успешно применяют для определения щелочных и щелочноземельных элементов, а также таких металлов, как хром, железо, кобальт, никель, магний, молибден, стронций, благородные металлы и др. Для некоторых металлов (хром, молибден, олово и др.) чувствительность определений может быть увеличена применением обогащенной смеси. К элементам, для определения которых практически бесполезно использовать воздушно-ацетиленовое пламя, относятся металлы с энергией связи металл — кислород выше 5 эВ (алюминий, тантал, титан, цирконий и др.). Пламя ацетилена с воздухом обладает высокой прозрачностью в области длин волн более 200 нм, слабой собственной эмиссией (особенно обедненное пламя) и обеспечивает высокую эффективность атомизации более чем 30-ти элементов. Частично ионизируются 0 нем только щелочные металлы (цезий 65%, рубидий 41 %, калий 30%, натрий 4 %, литий 1 %). [c.146]

    При нерегонке нефти щелочные и щелочноземельные элементы распределяются практически по всем фракциям. Их содержание, как правило, возрастает с увеличением температуры кипения фракции [786]. [c.171]

    Nal, Mg b, AIF3, ZrBf4. При определении степени окисления элементов в соединениях с полярными ковалентными связями сравнивают значения их электроотрицательностей (см. 1.6) Поскольку при образовании химической связи электроны сме щаются к атомам более электроотрицательных элементов, то по следние имеют в соединениях отрицательную степень окисления Фтор, характеризующийся наибольшим значением электроотрица тельности, в соединениях всегда имеет постоянную отрицательную степень окисления —1. Для кислорода, также имеющего высокое значение электроотрицательности, характерна отрицательная степень окисления обычно —2, в пероксидах —1. Исключение составляет соединение OF2, в котором степень окисления кислорода 4-2. Щелочные и щелочноземельные элементы, для которых свойственно относительно невысокое значение электроотрицательности, всегда имеют положительную степень окисления, равную соответственно +1 и +2. Постоянную степень окисления ( + 1) в большинстве соединений проявляет водород, например [c.185]


    Строят графики зависимости Ai, А и Аз от Х1Д изменяя значения Д. По полученным градуировочным графикам и рассчитанным значениям Ai, А2 и Аз находят х/Д и, зная значения Д, находят X, Этот вариант метода добавок позволяет учитывать изложение излучения мешающих спектральных линий или молекулярных полос, а также гасящее влияние анионов на эмиссию щелочных и щелочноземельных элементов, даже в случае образования термостойких соединений. [c.44]

    Зольность антрацитов составляет 4-6 мас.%. В составе золы содержатся оксиды кремния, алюминия, железа и незначительное количество щелочных и щелочноземельных элементов. [c.11]

    Таким образом, расплавы солей, обладающих в твердом виде ионной связью, являются ионизированными жидкостями, ионизация которых не связана с силами гидратации или сольватации. Такие наиболее важные для электролиза расплавов соли, как га-логениды щелочных и щелочноземельных элементов, в твердом виде обладают ионной решеткой галогениды кремния, титана, алюминия, сурьмы — молекулярной галогениды кадмия, свинца и других металлов — смешанной. Соответствующие связи характерны и для расплавов при температурах электролиза. [c.466]

    Щелочные и щелочноземельные элементы Си +, Со2+, N 2+ [c.238]

Таблица 29. Физические свойства щелочных и щелочноземельных элементов Таблица 29. <a href="/info/1186900">Физические свойства щелочных</a> и щелочноземельных элементов
    Окислы щелочных и щелочноземельных элементов обладают ярко выраженной основной природой — они [c.113]

    Хорощо зарекомендовали себя методы связывания примесей специально подобранными реагентами в такие химические соединения, которые сравнительно легко тем или иным способом (фильтрование, центрифугирование, отгонка и т. д.) отделяются от основного вещества. Так, действуя на водные растворы хлоридов и сульфатов некоторых щелочных и щелочноземельных элементов диэтилдитиокарбаминатом натрия (метод избирательного комплексообразования), можно перевести содержащиеся в этих солях примеси железа, кобальта, меди и некоторых других переходных металлов в малорастворимые соединения типа хелатов по схеме  [c.11]

    Методы переработки, основанные на взаимодействии со средними солями. В этих методах для разложения литиевого сырья применимы только те соли, которые термически устойчивы в конкретных температурных условиях технологического процесса. Такие соли — хлориды и сульфаты преимущественно щелочных и щелочноземельных элементов. [c.50]

    Метод рекомендуется применять для переработки не только бастнезита, но и других высококачественных концентратов РЗЭ, содержащих незначительное количество примесей щелочных и щелочноземельных металлов, которые могут загрязнять хлориды РЗЭ. Преимущество метода возможность получить в качестве конечного продукта безводные хлориды, не содержащие окислов и оксихлоридов, которые могут быть использованы непосредственно для получения металла удаление в ходе процесса всех примесей, за исключением щелочных и щелочноземельных элементов. [c.104]

    Приведенные примеры показьшают, что спектр возможных применений основных катализаторов, приготовленных с использованием соединений щелочных и щелочноземельных элементов, достаточно широк. [c.128]

    Аммиак КНз — бесцветный газ с резким характерным запахом, почти в два раза легче воздуха, легко сжижается (т. кип.— 33,4 °С). А. очень хорошо растворим в воде (при 20°С в 1 объеме Н2О растворяется 700 объемов N1 3). Раствор А. в воде называют аммиачной водой и.чи нашатырным спиртом. С кислотами А. дает соответствующие соли аммония. При действии А. на соли некоторых металлов образуются комплексные соединения — аммиакаты. Щелочные и щелочноземельные элементы реагируют с А., образуя в зависимости от условий нитриды пли амиды металлов. На каталитическом окислении А. (до оксидов азота) основан один из методов производства азотной кислоты. В природе А. образуется при разложении (гниении) азотсодержащих органических веществ. Основной промышленный метод получения А.— синтез его в присутствии катализаторов при высокой температуре п высоком давлении из азота воздуха и водорода. А. используют для получения азотной кислоты и ее солей, солей аммония, мочевины, синильной кислоты, соды по аммиачному способу, аммиачных удобрений и др. А. применяют в органическом синтезе, как хладоагент, для азотирования стали, в медицине (нашатырный спирт). [c.16]

    Полифосфаты и метафосфаты образуют растворимые координационные комплексы (см. гл. 23) с щелочными и щелочноземельными элементами. Комплексы щелочных металлов, например полиметафосфат натрия, не очень устойчивы, а щелочноземельные комплексы представляют собой вполне устойчивые соединения. Поэтому, например, изготовляемый в промышленных масштабах продукт, называемый [c.382]


    Спектрометрию пламени обычно используют как недорогой метод определения щелочных и щелочноземельных элементов. [c.18]

    К веществам, вызывающим горение при воздействии на них воды, относятся металлические натрии и калий, карбид кальция, карбиды щелочных металлов, фосфористые кальций и натрий, гидраты щелочных и щелочноземельных элементов и др. Попадание на такие вещества воды крайне опасно. Например, карбид кальция при действии даже незначительных количеств влаги разлагается с выделением ацетилена. Реакция экзотермическая и протекает с больтинм выделсипсм тепла (выше 500—700 °С), что вызывает самовоспламсиепие образующегося ацетилена и может привести к взрыву. Щелочные металлы ири взаимодействии с водой окисляются, выделяя большое количество тепла, что вызывает самовоспламенение образующегося при этом водорода. В мелко раздробленном виде металлические калий и натрий воспламеняются на влажном воздухе. [c.53]

    Эмиссионная спектрометрия пламени повсеместно замещена пламенной атомно-абсорбционной спектрометрией. Однако некоторые недорогие системы для определения щелочных и щелочноземельных элементов все еще производят. [c.18]

    Большинство сухих хемосорбционных способов очистки газов от кислых компонентов основано на химическом взаимодействии вредных примесей с основаниями, окислами и солями щелочных и щелочноземельных элементов. Для удаления вредных примесей из газов с одновременной осушкой используют смесь гидрокарбонатов натрия, калия, аммония и магния, нанесенную на диоксид кремния или бентонит. [c.251]

    Предложен метод расчета оптимальной концентрации элюентов для щелочных и щелочноземельных элементов, основанный на вычислении максимальной работы (.4) элюирования ионов при идеальном обмене по следующему уравнению [455]  [c.42]

    Количества щелочных и щелочноземельных элементов на восходящих бумажных хроматограммах определяют после электролитического выделения на ртутном катоде с большой поверхностью при [c.49]

    Методом двумерной хроматографии на бумаге отделяли натрий от щелочных и щелочноземельных элементов [482]. В качестве первого растворителя использовали смесь (87 13) абсолютного этанола и воды, в качестве второго — фенол, насыщенный водой. Разделяемые ионы имеют следующие величины 7 / (при 19° С) 0,17 Ка 0,14 К 0,19 ВЬ 0,26 Сб 0,40 КЩ 0,25 Mg 0,09 Са 0,08 8г 0,80 Ва 0,07. [c.49]

    При определении натрия в силикатных породах (гнейсах, гранитах, сиенитах) с содержанием не менее 10 % используют метод Аренса для концентрирования щелочных и щелочноземельных элементов с последующим определением натрия атомно-эмиссионным методом по линии 588,9 нм в воздушно-ацетиленовом пламени [424]. Пламенно-фотометрическая установка сконструирована на основе двойного стеклянного монохроматора ДМ. Фотоэлектрическое устройство состоит из фотоумножителя ФЭУ-17, выпрямителя ВВС-1 и зеркального гальванометра М-21. [c.156]

    Щелочные и щелочноземельные элементы в сурьме и ее соединениях определяют методами фотометрии пламени. Так, в сурьме определяют Ы, Na, К и Са в остатке после удаления основы отгонкой в виде хлорида в токе С12- Предел обнаружения Na, К и Са составляет 1-10 %, для Ы — 3-10 % [1374]. По другому методу [509] Са в сурьме определяют по молекулярной полосе СаО при 622 нм. Предел обнаружения 5-10- % Са, ошибка 3—5%. [c.173]

    Примечательно, что в присутствии кислот ускоряется распад ROOH и на свободные радикалы [259, 260]. Катализаторами гетеролитического и сопутствующего ему гомолитического распада могут служить также кислоты Льюиса [261] и ионы щелочных и щелочноземельных элементов [262]. [c.125]

    Если один из элементов — типичный металл, а другой — неметалл, то при достаточной разности в значениях электроотрицательности элементов можно говорить о наличии приближенно ионной связи. Обычно все характерные черты ионной связи проявляются на таких бинарных соединениях они имеют прочную ионную кристаллическую решетку, диэлектрики, хорошо растворяются в воде диссоциируют на ионы и присоединяют ее с образованием щелочей. К ним относятся галогениды и оксиды щелочных и щелочноземельных элементов KF, Na l, aF2, ВаО и др. [c.341]

    Нитриды s-элементов имеют преимущественно ионный характер химической связи (например, в соединении NasN), а нитриды р-элементов характеризуются ковалентной связью. Поэтому нитриды этих элементов по составу подчиняются правилу формальной валентности все валентности атомов одного элемента должны быть задействованы всеми валентностями атомов другого элемента. Нитриды щелочных и щелочноземельных элементов солеобразны и разлагаются водой (см. выше уравнение реакции для a3N2). [c.342]

    Соединения водорода. По значению своей электроотрицательности водород близок к фосфору (см. табл. 4.2). Поэтому следовало бы ожидать образования гидридов (соединений со степенью окисления водорода -1) многих металлов, кремния и бора. На самом деле известны солеобразные гидриды для щелочных и щелочноземельных элементов (твердые LiH, СаНг и др.), ковалентные (газообразные SiH4, ВгНе) и металлоподобные. В последнем случае еще не ясно, являются ли они индивидуальными соединениями d- и /-элементов с водородом, или это твердые растворы. [c.344]

    Адсорбционно-комплексообразовательные колонки с носителем ДАУХ и реагентом диметилглиоксимом или 1-нит-розо-2-нафтолом впервые были использованы для очистки сульфатов цинка и кадмия от следов меди, железа, никеля и кобальта — металлов, которые даже в микроколичествах оказывают сильное воздействие на оптические свойства люминофоров, полученных на основе сульфидов цинка и кадмия. При pH = 6,8—7,2 в присутствии HjOa в растворах солей цинка, кадмия, щелочных и щелочноземельных элементов концентрация указанных примесей после очистки снижается на несколько порядков и составляет 1 10 — 4 Ю г/мл при концентрации очищаемых солей, равной 8—10%, что свидетельствует о высокой эффективности метода. [c.249]

    В конце 70-х годов в литературе появились сообщения, указывающие на то, что каталитической активностью в различных реакциях гидрирования и окисления обладают оксиды и соли щелочных и щелочноземельных элементов [36—38]. Отсюда следует, что реакции окислительно-восстановительного типа могут катализироваться ионами непереходных металлов, когда они находятся в составе цеолитов, оксидов или солей неорганических кислот (кстати, катионные формы цеолитов - это тоже соли алюмосиликатных кислот). Таким образом, в настоящее время можно говорить о стирании грани между кислотноюсновными и окислительно-восстановительными реакциями. [c.7]

    В нормальных условиях нелабильными по отношению к межхелатному обмену являются за редким исключением комплексонаты таких катионов, как бериллий(П), платина(П), палладий(П), ртуть(П), кобальт(П1), скандий(П1), ит-трий(П1), лютеций(И1), индий(П1), таллий(П1), хром(П1), платина(IV), цирконий(IV), гафний(IV), ванадий(V), молибден (VI) [320, 325, 347, 812]. Лабильные комплексонаты образуют, как правило, катионы щелочных и щелочноземельных элементов, магния(II), лантана(III), актиноидов [320, 326, 352, 812]]. Промежуточное положение занимают комплексы олова(П), кадмия(П), цинка(П), свинца(П), алюминия(П1) [320,810,813,814]. [c.423]

    Лампы с тлеющим разрядом позволяют достичь пределы обнаружения порядка миллионных долей. Пределы обнаружения составляют 1-1000 нг/мл в пламенной АЭС, где используют только атомные линии. Использование пламени позволяет определять 40-45 элементов. Наилучшие результаты получены для щелочных и щелочноземельных элементов. Результаты не столь хороши для таких элементов, как Аз, В, Ве, Сс1, 8Ь, 8е, 81 и 2п, поскольку их резонансные линии лежат ниже 270 нм и температура пламени слишком низка, чтобы эффективно заселить первые возбужденные состояния этих элементов. Для таких элементов, как Се, Ьа, ТЬ и и, даже обогащенное пламя 2H2-N20 имеет низкую температуру. В настоящее время пламенную АЭС используют в оаювном в качестве недорогой системы для определения щелочных элементов (Ка, К) на уровне мкг/мл. [c.35]

    Соединения натрия легко возбуждаются в низкотемпературном пламени светильный газ—воздух (температура равна 1870° С), окрашввая пламя в характерный желтый цвет. В аналогичных условиях пламя окрашивается в различные цвета от присутствия летучих соединений остальных щелочных и щелочноземельных элементов. В присутствии последних натрий удобнее обнаруживать с помощью спектроскопа прямого зрения, наблюдая линию натрия при 590 нм. Предел обнаружения натрия данным методом очень низок, поэтому натрий можно обнаруживать практически везде в воде, газе, реагентах. [c.35]

    Основным методом при анализе солей щелочных и щелочноземельных элементов является метод пламенного атомно-эмиссионного анализа [157, 172, 175, 249, 250, 252-254, 270, 394, 395, 400, 414, 503, 563-565, 572, 586, 636, 826, 1107, 1136, 1230, 1231]. При определении натрия в солях щелочных и щелочноземельных элементов методами пламенной спектрометрии могут проявляться особенности влияния матриц, заключающиеся в смещении равновесных состояний натрия в пламенах, а также может возрастать роль спектральных влияний при применении метода атомно-эмиссионного анализа. Из-за специфических особенностей матриц в отдельный подраздел выделен анализ солей щелочных и щелочноземельных ivie-таллов. [c.172]

    Бензоплгпдроксамовая кпслота с марганцем в аммиачном растворе дает комплексное соединение красновато-бурого цвета. Максимум поглощения кодшлекса наблюдается при 500 нм (е=3600) [1247]. Определению дгарганца не мешают ионы щелочных и щелочноземельных элементов, А1(1П), 2п 11), Зи(П), 8п(1У), Сг(Ш), Р1(У1), С1-, N0 , БОГ, 50Г. З. ОГ, 510 , Мо(У1), [c.62]

    Известны для урана тройные окислы. Наибалее хорошо изученными тройными окислами являются уранаты щелочных и щелочноземельных элементов моно- и диуранаты состава МегиОл и МегигОт. Уран образует и полиуранаты (731, 1001]. [c.14]

    Определение осаждением окисью ртути. Из растворов солей уранила уран может быть количественно осажден добавлением суспензии окиси ртути [317]. В присутствии кислородных кислот осаждение неполное. Для достижения полноты осаждения необходимо прибавление хлорида аммония. Ускоряющее действие ионов хлора состоит в том, что они связывают образующиеся в процессе реакции ионы двухвалентной ртути и тем самым ускоряют взаимодействие с окисью ртути. Осаждение проводят при кипячении, в процессе которого, по-видимому, образуется диуранат аммония и растворимый слабодиссоции розан ный хлорид ртути (И). Осадок промывают кипящим раствором хлорида аммония и после прокаливания взвешивают в виде йзОа. Метод позволяет определять уран (VI) в присутствии щелочных и щелочноземельных элементов с хорошими результатами.  [c.68]


Смотреть страницы где упоминается термин Щелочные и щелочноземельные элементы: [c.143]    [c.229]    [c.179]    [c.64]    [c.181]    [c.38]    [c.110]    [c.209]   
Смотреть главы в:

Геометрия молекул -> Щелочные и щелочноземельные элементы


Физические методы анализа следов элементов (1967) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Щелочноземельные элементы



© 2025 chem21.info Реклама на сайте