Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Литийорганические соединения синтез

    В отличие от области литийорганических соединений синтез натрийорганических соединений по реакции [c.396]

    В последнее время для синтеза новых каучукоподобных полимеров вновь стали находить применение литийорганические соединения. В связи с тем, что полимеризация под их влиянием протекает по механизму живых цепей, литийорганические соединения использованы для промышленного получения бутадиен-стирольных блоксополимеров —термоэластопластов, содержащих гибкую бутадиеновую часть цепи, состоящую в основном из 1,4-звеньев, и стирольные блоки по концам цепи. [c.13]


    Синтез сополимеров бутадиена и стирола с контролируемым содержанием полистирольных блоков, которые находят широкое применение в производстве резиновой обуви и резинотехнических изделий, осуществляется на обычном оборудовании в присутствии литийорганических соединений чаще н- или втор-бутиллития, а [c.277]

    Синтез термоэластопластов осуществляется с помощью катализаторов, образующих так называемые живые цепи, сохраняющие способность к росту в течение неограниченного времени [4]. В качестве катализаторов такого типа промышленное признание получили литийорганические соединения. Они позволяют получать полимеры с более регулярной микроструктурой эластомерного блока, чем при использовании органических соединений других щелочных металлов, и тем самым обеспечить термоэластопластам лучший комплекс свойств. Литийорганические инициаторы, используемые для синтеза термоэластопластов, должны обладать высокой скоростью инициирования, обеспечивающей получение полимеров с узким молекулярно-массовым распределением. С этой целью обычно применяется вгор-бутиллитий [5]. [c.284]

    Таким образом, необходимо наличие в металлируемом соединении достаточно подвижного водорода. Растворители эфирного типа значительно облегчают реакцию переноса цепи и, кроме того, сами часто являются объектами металлирования, что служит еще одним доводом к отказу от использования их в процессах получения жидких каучуков методом каталитической полимеризации. Однако в некоторых случаях перенос активного центра возможен также в среде неполярных растворителей. Так, эффективный перенос цепи осуществляется при синтезе бутадиен-стирольных жидких каучуков, если процесс проводят в толуоле в присутствии алкоголятов калия, в качестве добавок сближающих константы сополимеризации. При исследовании кинетики полимеризации 1,3-пентадиена было показано, что если полимеризация транс-формы мономера подчиняется закономерностям полимеризации с литийорганическими соединениями, то цас-форма ведет себя иначе во всех растворителях эффективный перенос на мономер обусловливает расширение молекулярно-массового распределения и получение полимера с молекулярной массой более низкой, чем расчетная [17], [c.418]

    Применение катализаторов на основе металлов переменной валентности в некоторых случаях не позволяет полностью удалить из каучуков остатки катализатора, что может привести к значительному снижению стабильности каучука. С этой точки зрения синтез стереорегулярных каучуков с применением литийорганических соединений обеспечивает получение более стабильных полимеров, чем с применением катализаторов на основе кобальта, титана, ванадия. [c.628]


    Эта реакция имеет много общего с синтезом реактивов Гриньяра, за исключением необходимости получать литийорганические соединения только в инертной, сухой атмосфере (лучше всего в аргоне, так как с азотом литийорганические соединения медленно взаимодействуют). Литийорганические соединения самовоспламеняются на воздухе. Подобно магнийорганическим соединениям, они разлагаются веществами, содержащими подвижный атом водорода  [c.221]

    Синтезы с применением литийорганических соединений. Литийорганические соединения обладают большей реакционной способностью по сравнению с магнийорганическими соединениями, однако в ряде случаев они в меньшей степени вызывают побочные про- [c.221]

    В силу своей высокой химической активности литийорганические соединения являются ценными веществами для осуществления синтеза разнообразных органических и новых элементоорганических соединений. Они способны присоединяться к разнообразным соединениям по кратным углерод-углеродным связям, что в системах с сопряженными связями вызывает их полимеризацию. Например, в случае изопрена протекают следующие реакции  [c.589]

    Магнийорганические соединения способны присоединяться по кратным связям углерод—углерод, углерод—азот, углерод—кислород, углерод—сера. Они участвуют в различных реакциях, в том числе для получения органических соединений других металлов, гормонов и витаминов и являются одними из наиболее ценных реактивов для синтеза. По реакционной способности они уступают литийорганическим соединениям и во многих случаях постепенно заменяются ими. [c.590]

    Одной из областей экспериментальной химии, которая пока еще не стала объектом систематических исследований специалистами по квантовой химии, является дизайн химического синтеза . Имеются вполне обоснованные причины, по которым до сих пор опубликованы лишь немногие отдельные результаты по этой тематике. С одной стороны, в настоящее время объектами синтеза служат обычно молекулы, как правило, среднего размера или же большие, для которых квантовохимический анализ является дорогостоящим. С другой стороны, при отборе путей синтеза важную роль могут играть сольватационные эффекты, а надлежащий их учет при квантовохимическом анализе представляет собой сложную проблему. Тем не менее опубликованы результаты удачных исследований (см., например, ряд исследований литийорганических соединений группами Шлейера и Попла [1]), в которых на основании квантовохимических расчетов предусматривались направления возможного синтеза. [c.92]

    Синтезы с литийорганическими соединениями [c.219]

    Книга представляет собой пособие для практического освоения ряда фундаментальных методов органического синтеза. В ней рассмотрены каталитическое гидрирование органических соединений, восстановление комплексными гидридами металлов, реакции литийорганических соединений и применение жидкого аммиака в органическом синтезе. Каждая глава включает обсуждение важнейших особенностей метода, а также описание экспериментальной процедуры 10-15 синтезов с подробной химико-физической характеристикой получаемых веществ (ИК, УФ, ПМР спектры). [c.2]

    В четырех главах настоящего учебного пособия рассмотрены методы каталитического гидрирования органических соединений и их восстановления комплексными гидридами металлов, применение жидкого аммиака в органическом синтезе и реакции литийорганических соединений. Каждая глава содержит обзор литературы, в котором обсуждаются область применения метода, его важнейшие особенности, механизмы реакций, экспериментальные условия их реализации и зависимость реакционной способности реагентов от строения. Обзоры тематически связаны с соответствующими разделами лекционного курса и могут использоваться при их углубленном изучении, что существенно, так как по большинству из рассмотренных методов в отечественной учебной литературе подобных обзоров нет. Перечень основных литературных источников, использованных при написании книги, по-видимому, будет полезен в большей степени преподавателям, чем студентам, поскольку в него включены преимущественно труднодоступные издания и специальные монографии, малопригодные в качестве учебного материала. [c.7]

    Глава 4. ЛИТИЙОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ В ОРГАНИЧЕСКОМ СИНТЕЗЕ [c.220]

    МЕТОДЫ СИНТЕЗА ЛИТИЙОРГАНИЧЕСКИХ СОЕДИНЕНИЙ [c.225]

    Большое разнообразие литийорганических соединений доступно для применения в органическом синтезе благодаря легкости, с которой простейшие литийалкилы могут быть превращены в новые литийорганические соединения. Основным методом, используемым с этой целью, является металлирование (литиирование), т. е. замещение водорода металлом (литием)  [c.227]

    Рассмотренные методы получения литийорганических соединений, по существу, имеют много общего. Все они представляют собой реакции замещения литием галогена, водорода или другого металла. Возможность применения их в синтезе некоторых соединений показана в табл. 4.2. [c.237]


    Одной из реакций, которые очень эффективны при использовании алкиллитиевых реагентов, но плохо идут с реактивом Гриньяра, является синтез кетонов из карбоновых кислот. Литийорганическое соединение взаимодействует с солью карбоновой кислоты, образуя в качестве промежуточного продукта реакции дилитиевую соль. Последняя оказывается стабильной при комнатной температуре и лишь при гидролизе реакционной смеси дает кетон наиболее часто реакция используется для получения метилкетонов  [c.241]

    Одним из важных методов образования углерод-углеродной связи является присоединение литийорганических соединений по карбонильной группе альдегидов и кетонов, что представляет собой общий метод синтеза первичных, вторичных и третичных спиртов  [c.241]

    Это. увеличило набор применяемых в синтезе нуклеофильных синтонов (см. табл. 4.3) и позволило успешно и зачастую регио-селективно осуществлять многие превращения на их основе. Еноляты лития вступают в те же реакции, что и другие литийорганические соединения. И хотя они являются амбидентными нуклеофилами (т. е. могут выступать как О- и С-нуклеофилы), наиболее типичные пути их превращений связаны с С-нуклеофильностью. Нижеприведенная реакция подтверждает это положение  [c.244]

    Разрыв связей С-0 простых эфиров редко применяется в синтезе. Однако литийорганические соединения часто готовят и используют в виде растворов в эфире, и поэтому желательно знать, как быстро происходит этот разрыв и какие продукты при этом образуются. [c.254]

    В свою очередь, промышленные процессы синтеза практически важных соединений часто включают использование литийорганических соединений. Сюда надо отнести, прежде всего, процессы [c.256]

    Литийорганические соединения используются и во многих других промышленных процессах. Без сомнения, число их будет увеличиваться по мере того, как промышленный органический синтез будет осваивать современные технологии, основанные на применении высокореакционноспособных соединений. [c.257]

    Другое ограничение синтезов Гриньяра состоит в реакции вторичных гриньяровских реактивов с тормозящими кетонами. При такой комбинации выходы обычно очень малы, поэтому эта реакция не подходит. В подобных случаях соответствующие литийорганические соединения дают эначительно лучшие результаты, чем реактив Гриньяра. Указанные структурные особенности оказывают влияние на реакции со сложными эфирами и альдегидами (табл. 1) [32]. [c.505]

    Эквивалентами карбаииолов ири такой ра )борке могут служить, например, реагенты Грипьяра нли литийорганические соединения, а карбкатионов — альдегиды или кетоны (при синтезе спиртов, как на схеме), производные карбоновых кислот (при синтезе кетонов) или СО2 (при синтезе карбоновых кислот). [c.97]

    Благодаря меньшей реакционной способности по сравнению с другими щелочноорганическими соединениями литийорганические соединения более удобны в работе. Они более реакционноспособны по сравнению с реактивами Гриньяра и могут быть использованы тогда, когда магнийорганические в реакцию не вступают, например в синтезе пространственно затрудненных углеводородов и их производных. Однако высокая чувствительность литийорганических соединений к кислороду и влаге воздуха затрудняет их практическое применение, так как реакции с их участием необходимо вести в атмосфере инертного газа (аргон, очищенный от кислорода азот). [c.208]

    Получение литийорганических соединений. Чаще всего синтез литийорганических соединений осуществляют действием металлического лития на галогеналкилы или галогенарилы в среде абсолютного эфира или углеводородных растворителей  [c.220]

    Подобно реактивам Гриньяра, литийорганические соединения не выделяют из среды, в которой они получены, и используют в виде растворов в последующих синтезах. Литийалкилы не хранят в эфире вследствие постепенно протекающего их взаимодействия с эфиром. В углеводородных растворителях в условиях, исключающих попадание кислорода и влаги, они сохраняются продолжительное время без заметных изменений. Литийарилы по отношению к эфиру достаточно устойчивы. [c.221]

    Современная органическая химия может с гордостью заявить о своей способности синтезировать неизвестные Природе соединения огромной сложности и об обладании набором разнообразнейших методов, позволяющих выполнять почти любые химические трансформации. Такое заявление надежно подкрепляется множеством вьщающихся достижений органического синтеза последних десятилетий. Тем не менее, впечатление от таких мажорных аккордов немедленно тускнеет при сопоставлении с работой химических механизмов даже простейшей живой клетки. Тысячи соединений (и просп,1Х, и исключительно сложных) синтезируются ферментами в любой момент жизни клетки при обычных (физиологических) условиях в воде, в узком интервале значений pH, без применения высоких температур и давлений и без помоши наших суперактивных реагентов типа сверхкислот, сверхсилькых оснований, щелочных металлов, галогенов, литийорганических соединений и т. п.. В любой клетке непрерывно осуществляются многостадийные синтезы огромного разнообразия органических соединений, необходимых для поддержания ее жизни. Все эти синтезы выполняются за считанные минуты с количественными выходами и строго регао- и стереоспецифично Это означает, что все наиболее трудные проблемы стратегии и тактики органического синтеза уже давно решены на химических комбинатах , оперирующих в любой живой системе. Такое высочайшее совершенство биосинтеза невольно вызывает у химиков смеш анные чувства и восхищения, и подавленности от сравнения своих скромных возможностей с достижениями Природы, [c.476]

    Получение и последующее взаимодействие литийорганических соединений неЫ ходимо проводить при полном отсутствии кислорода и двуокиси углерода. Обычн синтез проводят в атмосфере азота. Азот очищают от кислорода пропусканием черв щелочной раствор пирогаллола, а затем сушат, пропуская через колонку с a J и трубку с PaOs. [c.638]

    Литийорганические соединения выгодно отличаются от реактивов Гриньяра, часто используемых в синтезе, так же как и от других металлорганических соединений. Они, как правило, более реакционноспособны, и вследствие этого конечные продукты получаются с высокими выходами. Выделелять продукты проще, так как большинство литиевых солей хорошо растворимо в воде. Они менее, чем магнийорганические реактивы, склонны к реакциям восстановления и сопряженного присоединения. Немаловажным фактором является также то, что при синтезе литийорганических соединений меньше трудностей возникает с выбором растворителей. Обладая не очень сильно поляризованными связями, эти соединения хорошо растворяются как в слабополярых (типа простых эфиров), так и в неполярных (типа углеводородов) растворителях, чем выгодно отличаются от более реакционноспособных натрий-органических соединений, которые вследствие солеобразного строения не растворяются в указанных растворителях, и от магнийорганических соединений, которые требуют более полярных растворителей. Возможность применения углеводородных растворителей особенно ценна для промышленной наработки литийорганических соединений (многие из них благодаря этому вполне доступны) и для использования их в синтезе практически важных соединений, в частности лекарственных препаратов. [c.220]

    Широкое использование литийорганических соединений связано прежде всего с тем, что они являются удобными синтетическими эквивалентами синтонов нуклеофильного типа. При этом во многих случаях они имеют преимущества перед более реакционноспособными натрийорганическими и менее реакционноспособными магний-, кадмий- или ртутьорганическими соединениями. В целом литийорганические соединения применяются сейчас столь же часто, как и магнийорганические. Выбор конкретного металлоргани-ческого соединения зависит, прежде всего, от целей синтеза. [c.237]

    Как можно было заметить из вышеприведенных примеров, строение литийорганических соединений не имеет большого значения для протекания реакций алкилирования. Арил- и виниллитие-вые реагенты удается алкилировать алкилиодидами и бромидами. Тем не менее делокализация отрицательного заряда карбаниона облегчает ход реакции. Этот эффект, в частности, наблюдается при использовании литийорганических производных 1,3-дитиана, стабилизация отрицательного заряда за счет атомов серы в котором отмечена выше. Такие соединения легко алкилируются, при этом после гидролиза появляется маскированная образованием дитио-ацеталя карбонильная группа. В целом открытие данной реакции позволило превращать доступный электрофильный синтон КС Н(ОН), соответствующий карбонильному соединению, в недоступный ранее нуклеофильный синтон, КС =0 (обращение полярности синтона). На этом основан общий метод синтеза альдегидов и кетонов путем алкилирования их простейших представителей  [c.247]

    Литийорганические соединения (чаще бутиллитий) участвуют на стадии депротонирования фосфониевой соли, поэтому они могут быть заменены другими сильными основаниями. Свойства илидов, однако, зависят от природы основания. При синтезе с использованием литийорганических соединений илиды иногда проявляют специфичные свойства, так как могут существовать в виде металли-рованиого соединения или комплекса с галогенидом лития  [c.252]


Смотреть страницы где упоминается термин Литийорганические соединения синтез: [c.77]    [c.543]    [c.77]    [c.208]    [c.174]    [c.139]    [c.464]    [c.88]    [c.8]    [c.233]    [c.256]   
Основы органической химии (1968) -- [ c.309 , c.310 ]

Основы органической химии 1 Издание 2 (1978) -- [ c.376 , c.377 ]

Основы органической химии Часть 1 (1968) -- [ c.309 , c.310 ]




ПОИСК





Смотрите так же термины и статьи:

Литийорганические соединени



© 2025 chem21.info Реклама на сайте