Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механика квантовая химическая

    Теория строения электронной оболочки молекулы и явлений, им определяемых, — квантовая механика, квантовая химия. Вся химия — явление химической связи, превращение связей в реакциях— подчиняется квантовомеханическим закономерностям. В биофизике квантовая механика играет ту же роль, что в химии и физике молекул — она является основой понимания структуры молекул, природы их взаимодействий, их электронных (например, спектральных) свойств. Однако во многих случаях проблемы, связанные с электронными свойствами молекул, могут решаться и с помощью полуэмпирической классической теории, в частности применяющей так называемую валентно-оптическую схему (см. [45, 46]). [c.48]


    Эдвард Теллер (род. 1908 г.) — немецкий физик, после прихода к власти нацистов эмигрировал в США, где его называют отцом водородной бомбы . Автор ряда фундаментальных исследований в области квантовой механики, квантовой химии, > в частности в области теории химических и особенно термоядерных реакций. Идея теоремы Яна— Теллера, по словам самого автора, принадлежит Л. Д. Ландау, высказавшему ее еще в 1934 г. [c.179]

    В-третьих, движение ядер в адиабатных условиях можно рассматривать с позиций классической механики. Квантово-механические расчеты показывают, что это предположение строго выполняется на вершине потенциального барьера при конечной скорости движения частицы. Оно выполняется и вблизи вершины потенциального барьера при условии достаточно большой скорости движения частиц. Последнее предположение существенно упрощает нахождение средней скорости элементарной реакции, так как позволяет пользоваться классической статистикой. Как мы увидим ниже, предположение об адиабатном течении элементарного химического процесса может и не выполняться, но опыт показывает, что такие процессы сравнительно редки. [c.144]

    Понятие о квантовой химии. В самом общем виде квантовая химия — это приложение современной квантовой теории для рещения химических проблем. Она занимается изучением строения и физико-химических свойств молекул, радикалов, комплексов н кристаллов на основе представлений современных квантовых теорий, в частности квантовой механики. Квантовая химия охватывает учение о природе химической связи, об электронной структуре молекул и других объектов исследования химии, а также вскрывает взаимосвязь между структурой и свойствами, включая реакционную способность веществ. Квантовая химия — современное учение о химическом и кристаллохимическом строении вещества, а также взаимосвязи между строением и свойствами на основе представлений и методов квантовой механики. Таким образом, квантовая химия представляет собой дисциплину на стыке физики и химии и имеет первостепенное значение для всей современной химии.. [c.88]

    После объяснения на основе квантовой механики природы химической связи в молекуле водорода были предприняты многочисленные попытки, с одной стороны, улучшить метод Гайтлера — Лондона, а с другой,— распространить его на другие, более сложные молекулы, что привело в итоге к созданию метода валентных связей ВС), [c.158]


    Установление электронно-ядерного строения химических соединений и развитие затем квантово-механических представлений о строении молекулярных систем дали возможность трактовки природы атомного связывания, но в квантовой механике само понятие химической связи в классическом понимании не возникает и вообще не является необходимым Речь может идти лишь об интерпретации квантового расчета и о том, какой смысл следует вкладывать в понятие химической связи Здесь, по-видимому, возможны разные подходы Наиболее близок к классическому понятию химической связи подход, при котором результаты квантово-химического расчета интерпретируются на уровне взаимодействия атомов в молекуле Например, полная электронная энергия молекулы представляется в виде суммы вкладов, соответствующих отдельным атомам и парам атомов, вклады таких парных взаимодействий в полную энергию можно сопоставить между собой и выделить главные и второстепенные, что должно соответствовать понятиям химической связи и взаимодействию валентно-несвязанных атомов Однако квантовая механика рассматривает молекулярные системы как состоящие из ядер и электронов, и в этом смысле взаимодействия в молекуле логично интерпретировать также на уровне ядер и электронов, те вложить в понятие химической связи иной смысл, чем в ортодоксальной теории химического строения Возникает вопрос как это можно сделать, как дать наглядную физическую интерпретацию взаимодействиям в молекуле на уровне ядер и элект-ронов > [c.108]

    Квантовая химия — лишь часть теоретической химии, которая использует наряду с квантово-химическими другие модели строения вещества, непротиворечащие общим принципам квантовой механики. Некоторые модельные представления удается оправдать на уровне более детализированных квантово-химических расчетов (на примере относительно простых молекулярных структур). Выработка модельных представлений — одна из задач теории, в том числе и квантово-химической. Поэтому проведение численных расчетов не всегда является конечным результатом исследования. Необходима определенная интерпретация полученных данных. Перечислим некоторые физические характеристики, вычисление которых способствует уяснению структуры молекул или молекулярных систем. [c.185]

    Таким образом, резонанс не явление, а приближенное описание состояния электронов молекул. Так как теория резонанса относится в основном не к задаче квантово-химического расчета, а построена как полуэмпирическая теория, связывающая на основе квантовой механики различные экспериментальные факты, то возник ряд необоснованных приближений. [c.482]

    Дальнейшее развитие основывалось на применении количественных методов квантовой механики к химическим проблемам и, следовательно, лучшем понимании истинного механизма химической связи. Стало очевидным, что качественное различие между ненасыщенными и насыщенными системами обусловлено тем, что две или три компоненты кратной связи не являются эквивалентными. Особые свойства сопряженных систем объяснялись теперь взаимодействием я-электронов соседних кратных связей с образованием расширенных я-орбит, охватывающих ряд атомов. Электроны, находящиеся на таких орбитах, не сконцентрированы в областях между парами атомов, а могут свободно передвигаться по всей сопряженной системе. Можно показать, что такая делокализация электронов объясняет наиболее очевидные особенности сопряженных и ароматических систем, в частности их большие теплоты образования и тот факт, что связи в них обычно имеют длину, промежуточную между длинами нормальных ординарных, двойных и тройных связей. Этот подход к сопряжению, предложенный Хюккелем в 1930 г. и позднее развитый рядом ученых (обзор и ссылки см. у Коулсона [23]), оказался исключительно плодотворным, в особенности при использовании квантово-механического при-, ближения, известного под названием метода молекулярных орбит. [c.9]

    Однако такой вид многоэлектронной волновой функции, во-первых, не удовлетворяет принципу Паули и, во-вторых, может быть получен последовательно только если оператор Гамильтона для многоэлектронной системы распадается на части, каждая из которых зависит от координат только одного электрона Оба эти условия, при которых можно было бы говорить о локализации отдельных электронов, слишком далеки от требуемых квантовой механикой для Химических частиц и слишком грубы для того, чтобы принять их как основу классификации состояний электронов в любых химических частицах. Если на многоэлектронную волновую функцию химической частицы не накладывать условия (противоречащего принципу Паули и уравнению Шредингера), чтобы она представляла собой простое произведение одноэлектронных функций, то ни о какой локализации отдельных электронов говорить нельзя (см. также гл. IV). [c.74]


    Мы снова приходим к выводу, что вводимый в ряд квантово-химических работ постулат о том, что наиболее низким по энергии состоянием системы всегда является состояние с наименьшим суммарным спином (проекцией суммарного спина) электронов, является необоснованным с точки зрения квантовой механики и не следующим из нее. Так как это лоложение противоречит целому ряду экспериментальных [c.105]

    С помощью квантово-химической программы, основанной на молекулярной механике (метод ММ+) [ 1 ], рассчитана поверхность потенциальной энергии оксониевого иона, полученного при протонировании 1,3-диоксана  [c.81]

    Из сказанного в гл. IV следует, что согласно квантовой механике в химической частице при заданной ядерной конфигурации имеет место следующая общая картина состояния электронов. [c.111]

    Серьезные успехи были достигнуты в последние десятилетия в развитии и углублении ряда основных понятий теории химического строения. Эти успехи базировались на результатах экспериментальных исследований свойств микрочастиц (электронов, ядер, атомов, молекул, ионов) физическими методами, на развитии атомной и молекулярной спектроскопий, молекулярной оптики, квантовой механики, квантовой химии и других разделов современной физической химии и физики. [c.51]

    Применение квантовой механики к химическим проблемам преследует две основные цели. Первая — описать на основе точных вычислений известные химические свойства. Вторая — заменить эмпирический подход в химии на более строгий, неэмпирический. Достижению первой цели было посвящено много работ теоретиков, в результате которых мы можем сегодня с уверенностью сказать, что строение атомов и молекул подчиняется лишь законам квантовой механики. Все более и более точные вычисления неограниченно сокращают расстояние между теорией и экспериментом. Вторая цель — стимулировать дальнейшее ускорение прогресса в химии. Для достижения этой цели нет необходимости знать очень точно волновые функции. Более грубое, но эффективное приближение может даже лучше способствовать получению отчетливых теоретических представлений, позволяющих ускорить развитие химии. По этой причине экстраполяционный подход может быть полностью оправдан. [c.59]

    Квантово-химические методы основываются на определенных разделах математической теории. В связи с этим в данной гааве напомним идеи теории линейных пространств и, не претендуя на полное и детальное изложение, приведем некоторые более специальные понятия, словарь математических терминов и формулировки математических утверждений, необходимые для последующего изложения материала. Из курса квантовой механики обсуждаются преимущественно лишь те вопросы, которые будут важны для построения и анализа многоэлектронных волновых функций. [c.4]

    Общие принципы квантово-химических расчетов во всех случаях остаются сходными. Каждый объект с позиций метода МО считается единой системой, подчиняющейся законам квантовой механики. Обычно применяются адиабатическое и одноэлектронное приближения, вариант ЛКАОМО, вариационный метод с уравнениями Рутана. Кроме метода ССП и теории возмущений используется целый ряд упрощенных так называемых полуэмпирических методов. [c.48]

    Скепсис по отношению к принципу ЛСЭ, а равно и ко всем так называемым эмпирическим и полуэмпирнческим методам проявляют те исследователи, которые стоят на позициях ортодоксального применения уравнения Шредингера и вообще квантовой механики к химическим объектам. Эти исследователи полагают, что и структуру, и реакционную способность молекул необходимо рассчитывать только на основе одних фундаментальных закономерностей, исключая использование эмпирически найденных величин. Но такого рода требования применительно к химическим многоэлектронным системам не могли иметь под собой реальной почвы. Повисали в воздухе ввиду этого и идеи чистого фундаментализма, рациональной альтернативой которому могли быть лишь те принципы, которые синтезируют в себе квантово-механический подход с основными рабочими положениями классической химии. В числе этих принципов ныне находится и принцип ЛСЭ. [c.156]

    Квантовомеханический метод. Применение квантовой механики к химическим процессам и изучению свойств молекул обычно выделяют в особый отдел химии — квантовую химию. Квантовая механика может применяться к изучению структуры и свойств молекул, расчету химических связей, химического равновесия и скоростей химических реакций. Сложность систем вызы- [c.6]

    Характер влияния заместителей на химическую кинетику термолиза, а также термохимические и квантово-химические расчеты подтверждают бирадикальную схему термолиза [77,78, 81]. Исходя из бирадикальной модели, методом молекулярной механики ММ2, для большой серии замещенных диоксетанов и промежуточно образующихся бирадикалов были рассчитаны энтальпия образования, геометрия центрального фрагмента, торсионный угол О-С-С-О, энергия напряжения в цикле [83]. В совокупности с термохимическими расчетами по методу аддитивных групповых вкладов Бенсона удалось получить удовлетворительные корреляционные уравнения, связывающие величины аррениусовской энергии активации и свободной энергии активации с энергиями напряжения углов в исходном диоксетане и бирадикале. Достаточно высокая предсказательная способность этих корреляционных уравнений является дополнительным доводом в пользу бирадикальной схемы распада. [c.252]

    В квантовой химии все виды внутримолекулярных взаимо действий рассматриваются с единых позиций Природа любых сил взаимодействия считается электростатической С учетом законов квантовой механики проводится расчет, позволяющий установить строение устойчивость, энергию и другие параметры молекул В настоящее время такие расчеты осуществлены лищь для наиболее простых молекул Однако возможности квантово химических расчетов с развитием современной вычислительной техники постоянно растут [c.27]

    В курсе органической химии нет возможности и необходимости касаться применения уравне1шя Шредингера к расчету энергии МО и различных расчетных методов кваэтовой механики, так как эти вопросы являются специальным предметом физики (кванговой механики) или химической физики (квантовая химия) и изучаются по необходимости на старших, курсах. [c.64]

    Учитывая темпы совершенствования компьютерной техники и программ, квантово-химические расчеты были проведены с использованием современного программного пакете Gaussian 94 [302]. Предварительно молекулы ингредиентов оптимизировали методом молекулярной механики по алго- [c.92]

    Общая цель этой главы — дать читателю возможность без предварительного знакомства с квантово-химическими методами понять как всю важность, так и границы применимости квантово-механических расчетов, но отнюдь не научить его проводить такие расчеты самостоятельно. Даже в самых простых случаях для них требуется глубокое знание квантово-механических методов, и это необходимо предоставить спе-циалистам-теоретикам. Современная манера создавать теории ad и ho (к случаю) для каждого нового факта приводит к бесконечным недоразумениям и неясностям и возлагает на химиков, не имеющих возможности детально изучить квантовую механику, совершенно излишние обязательства. [c.11]


Библиография для Механика квантовая химическая: [c.1070]    [c.549]    [c.667]    [c.646]   
Смотреть страницы где упоминается термин Механика квантовая химическая: [c.292]    [c.239]    [c.232]    [c.727]    [c.646]   
История химии (1975) -- [ c.332 ]

История химии (1966) -- [ c.324 ]




ПОИСК





Смотрите так же термины и статьи:

Квантовая механика

Механика

Механика механика



© 2025 chem21.info Реклама на сайте