Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Добавки к катализаторам введение

    Добавка водяного пара при дегидрировании по этому способу имеет целью понижение парциального давления паров этилбензола и, таким об )а-зом, способствует протеканию реакции дегидрирования, являющейся равновесным процессом. Кроме того, введение водяного пара заметно уменьшает отложения кокса па катализаторе. [c.237]

    Повышение (до определенных пределов) концентрации хлора в серебре уменьшает подвижность кислорода, что приводит к снижению степени превращения этилена в двуокись углерода при сохранении той же степени его превращения в окись этилена. Увеличение количества добавки сверх оптимального может еще более упрочнить связь серебра с атомарным и молекулярным ионами кислорода, что вызовет уменьшение скорости окисления этилена и отравление катализатора. Введение незначительных количеств металлоида (сера, селен), степень заполнения поверхности которыми равна 0 = 10" —10" снижает энергию адсорбции кислорода, что увеличивает активность катализатора. При большем покрытии поверхности (0 — 0,2) активность катализатора уменьшается вследствие блокирования части его поверхности металлоидом. [c.220]


    Важно отметить, что поскольку окисление-и восстановление катализатора не являются прямой и обратной реакциями, то добавки к катализатору могут в различной степени ускорять эти реакции. Результатом этого является возможность изменения стационарного фазового состава катализатора за счет введения добавок, что при разной активности фаз приводит и к изменению активности катализатора в реакции. Такой вид влияния па активность катализатора можно назвать фазовым модифицированием, а сами добавки — фазовыми модификаторами. Очевидно, фазовое модифицирование возможно только в условиях воздействия среды на катализатор. [c.51]

    Как уже говорилось, в ряде работ последних лет показана возможность существенно увеличить удельную активность платины путем введения в алюмоплатиновые катализаторы добавок ряда элементов, модифицирующих платину и ускоряющих медленную стадию десорбции ненасыщенных продуктов с поверхности катализатора. Наиболее распространенными промотирующими добавками являются элементы подгруппы германия, введение которых в состав алюмоплатинового катализатора, не уменьшая количества кокса на катализаторе, предотвращает отложение его на платине [64]. [c.41]

    Большое влияние на показатели процесса прямой гидратации этилена оказывает качество применяемого катализатора, а также срок службы его. Применяемые в настоящее время промышленные фосфорнокислотные катализаторы при указанных выше параметрах ведения процесса имеют производительность по спирту 180—200 г/л катализатора в час и продолжительность работы 500 ч, после чего их необходимо регенерировать. Для увеличения длительности пробега катализатора и улучшения его качественных показателей на заводах прямой гидратации применяют подпитку катализатора, используя при этом техническую фосфорную кислоту. Добавка кислоты в количестве 250—300 г/ катализатора в час позволяет в несколько раз увеличить пробег катализатора. Введение раствора фосфорной кислоты в реактор гидратации осуществляется распылением его потоком парогазовой смеси либо паром высокого давления [19]. [c.34]

    На активность и изомеризующую способность катализаторов существенное влияние оказывает природа модифицирующих добавок (табл.). При введении в N1—А1 сплав металлов Си, Zn, Мо, В1 удельная активность катализатора увеличивается, а добавки Ре, Р(1, Мп уменьшают ее. Компоненты Т1, 2г, 5п не оказывают существенного влияния на активность катализатора. Наибольшее смещение потенциала в анодную сторону наблюдается на катализаторах, приготовленных из сплавов, содержащих добавки Мо, Рс1, В1, П, лг, п, 5п (Д1 , а,, =200—280 мв). Это свидетельствует о более прочной адсорбции гексена-1 на этих катализаторах. Введение в исходный сплав Си, Мп, Ре приводит к уменьшению адсорбции гексена-1 на поверхности катализаторов (А нач =120—170 мв). [c.22]


    Введение в отвержденные с помощью катализаторов лаки нитрата целлюлозы позволяет быстро достигнуть полного высыхания покрытия. Применять следует нитрат целлюлозы с минимальной вязкостью и по возможности с низкой степенью нитрования. Однако неизбежно применение и более дорогостоящих растворителей (кетоны и сложные Ц)иры). Хорошего высыхания (не отверждения) покрытия можно добиться даже без добавки катализатора, подобно тому, как в нитролаках. [c.264]

    Качество хлоропреновых клеев может быть значительно улучшено добавлением к ним феноло-формальдегидных смол. Введение этих смол повышает адгезионные свойства клеев, когезию пленки, в некоторых случаях — температуростойкость крепления, удлиняет время сушки, улучшает стабильность клеев. Поэтому большинство выпускаемых в настоящее время хлоропреновых клеев являются клеевыми композициями, содержащими хлоропреновый каучук, синтетическую смолу, наполнитель, противостаритель и вулканизующие агенты. Для повышения температуростойкости и других свойств крепления в клеи могут вводиться в небольших количествах добавки катализаторов, [c.262]

    Изучалось также влияние добавки различных химических веществ во время сульфирования углеводородов на ускорение или завершение реакции (при использовании серной кислоты), на уменьшение образования побочных продуктов (при применении высококонцентрированного олеума или ЗОз) или на изменение соотношения образующихся изомеров. Эти добавки рассматриваются как катализаторы или промоторы сульфирования. Но так как ароматические углеводороды легко сульфируются, вопросу ускорения этой реакции но уделялось достаточного внимания. Отмечается, что при высокой температуре (около 250°) сульфирование (главным образом моно- и некоторое количество ди-) бензола ускоряется добавлением солей металлов, особенна солей натрия и ванадия, добавленных вместо [5]. Ускорение введения второй сульфогруппы, которое происходит значительно труднее, чем первое, достигается добавлением различных соединений металлов [10, 73, 91], а ртуть может быть использована для облегчения введения третьей сульфогруппы [1031. [c.518]

    Промотирующие добавки специально вводят в состав носителя или они присутствуют в нем, если он является природным материалом. В этих случаях состав носителя усложнен и его пропитка промотором не производится. Среди компонентов носителей обнаруживаются те же промоторы, которые вводятся в других случаях в носитель пропиткой. В число промоторов, введенных в катализатор на [c.25]

    Предложены многочисленные модификации серебряного катализатора для окисления этилена. В качестве носителей указаны пемза, силикагель, оксид алюминия, смеси силикагеля и оксида алюминия, карбид кремния и др. Как активаторы и добавки, повышающие селективность, рекомендованы сурьма, висмут, пероксид бария. Интересно, что введение небольшого количества дезактивирующих примесей (сера, галогены) увеличивает селективность действия серебра, причем эти вещества лучше добавлять в реакционную смесь непрерывно, возмещая их расход на окисление. Практическое значение приобрела добавка 0,01—0,02 масс. ч. дихлорэтана на 1 масс. ч. этилена с такой добавкой селективность процесса повышается примерно на 5%. [c.434]

    Известны многие вещества, обладающие способностью повышать скорость крекинга нефтепродуктов, но высокие выходы желаемых продуктов получаются лишь при переработке с применением гидратированных алюмосиликатов. В промышленности могут использоваться активированные (обработанные кислотой) природные глины типа бентонита и синтетические алюмосиликатные или магниево-силикатные катализаторы [281, 286]. Их активность можно в некоторой степени увеличить добавкой малых количеств окисей циркония, бора (последняя имеет тенденцию улетучиваться во время процесса) и тория. При введении этих добавок состав продуктов крекинга в основном не изменяется. Как природные, так и синтетические катализаторы могут применяться в виде шариков, таблеток или порошка в любом случае необходима их своевременная замена вследствие потерь от истирания и постепенного снижения активности. [c.339]

    Модифицированные катализаторы. Промотированием называют добавку к катализатору небольшого количества другого вещества (веществ) с целью повышения его активности. Хотя этот термин укоренился в литературе по катализу, часто правильнее применять более общий термин — модифицирование. Этот термин лучше передает механизм действия добавок, поскольку одна и та же добавка в разных количествах часто может как повышать, так и понижать активность катализатора. Влияние добавок на селективность достаточно сложно и обычно связано с уменьшением активности катализатора в одном направлении и увеличением в другом. Наконец существуют добавки, влияющие па стабильность катализаторов. Поэтому под модифицированием катализаторов мы будем понимать введение в пих небольших количеств добавок, изменяющих свойства катализаторов в нужную сторону. Сами эти добавки мы будем называть модификаторами. [c.44]


    Для активности катализатора весьма благоприятными могут быть также и нарущения правильного расположения частиц в поверхностном слое, вызываемые включением некоторых определенных инородных атомов или молекул. Опыт показывает, что введение в катализатор некоторых добавок, которые сами не обладают каталитической активностью, может сильно повысить активность катализатора. Такие добавки называют промоторами. Их действие обусловливается главным образом влиянием на структуру поверхности катализатора. Обычно промотор вводится не в готовый катализатор, а добавляется в соответствующей стадии его изготовления. [c.496]

    Действие АЬОз в качестве активатора заключается в следующем. Ввиду того, что АЬОз — трудновосстанавливаемое соединение, оно отделяет кристаллы Fe друг от друга тонкой пленкой и тем самым препятствует их срастанию и уменьшению числа активных центров катализатора. А 2О3 имеет такую же кристаллическую структуру как и Рез04, но поскольку она йе восстанавливается до металла, то не принимает участия в росте кристаллов. Вместе с тем АЬОз обладает и нежелательным свойством — способна удерживать на своих поверхностных кислых центрах аммиак, что снижает эффективность катализатора. Для устранения отрицательного действия АЬОз к катализатору добавляют К2О, которая нейтрализует кислотные центры, снижает работу выхода электрона железа и повышает удельную каталитическую активность. Количество вводимой К2О должно быть пропорционально содержанию АЬОа. Нужно учитывать, что ввиду сильного минерализирующего действия, добавка К2О значительно снижает удельную поверхность катализатора. Введение ЗЮг понижает активность катализатора при одновременном же добавлении ЗЮ2 и СаО (MgO) активность немного возрастает [177, 182]. [c.162]

    Присадки для очистки камеры сгорания. С увеличением продолжительности эксплуатации двигателя возрастают требования к октановому числу. Этого можно избежать введением в топливо присадок, характеризующихся высокими антинагар-ным и моющим действием. Присадки этого типа должны отличаться высокой термической стабильностью и модифицировать нагар, делая его рыхлым и легко удаляемым. Этим условиям удовлетворяют алкенил-сукцинимиды с молекулярной массой 1000-10 000. Наиболее эффективны композиции алкенилсукцинимидов с полярными агентами, модифицирующими нагар кетонами, формамидами, ацетатами, которые могут быть использованы в качестве растворителя активного компонента присадки. Соединения, модифицирующие нагар, могут применяться и самостоятельно. Сукци-нимиды в присадке могут сочетаться с другими компонентами карбаматами, поли-эфираминами. Эффективность моющего действия может быть усилена добавкой катализаторов горения — соединений, содержащих марганец, щелочноземельные и другие металлы. Сукцинимидные присадки облегчают холодный пуск двигателя. [c.368]

    Для подавления реакции полного окисления этилена применяют быстрый отвод избыточного тепла или, что гораздо эффективнее, добавку к газовой смеси различных антикатализаторов или селективных ингибиторов, повышающих активность катализатора в направлении образования окиси этилена. В качестве селективных ингибиторов рекомендованы бензол, ксилол, спирт, галогены, арил-амины и т. д. Можно применять и благоприятствующее отравление — ослабление активности катализаторов введением в них 0,01—0,001% хлора. Любопытно отметить, что активность серебряных катализаторов для получения окиси этилена восстанавливается при обработке их тетрахлорэтаном при 175—325 ". Хорошим катализатором является Ag20 на корунде с добавкой ВаОд при 115°. Смесь из этилена с [c.201]

    Если скорость горения росла за счет введения катализатора [102], то значение 7 п не только не возрастало, но даже несколько падало. Имеются и другие данные, не согласующиеся с формулой и = Так, в работе [106] значение 7 п (измеренное при помощи термопар) падает с увеличением давления от —420° С при 50 атм до —330° С при 100 атм, хотя скорость горепия существенно растет. В работе [131] значение 7 п, измеренное для ряда,составов на основе NH4 IO4, в пределах разброса оставалось постоянным при изменении скорости горения за счет изменения давления (в интервале 1 — 15 атм), размера частиц окислителя или добавки катализатора [c.83]

    В качестве катализаторов были использованы 1) кристаллйче ское субдисперсное а-Ре ( о= 50 нм) 2) окись железа РегОа, со державшая а-РезОз (й о<5мкм) 3) ферроцен кристаллический, о<50 мкм. Добавки катализатора вводились сверх 100% в количестве 1% (масс). Исходная смесь ПХА + ПММА обозначалась как смесь А, та же смесь с добавкой Ре, РезОз и ферроцена обозначалась соответственно как А+Ре, А+РегОз и А + Ф. Были исследованы следующие параметры горения скорость горения, структура и температура поверхиости, максимальная температура пламени, спектральный состав продуктов горения по высоте пламени. Результаты определения скорости горения. смесей в зависимости от давления показывают, что в данных условиях в исследуемом интервале давлений все добавки увеличивают скорость горения а 20—40%. Введение катализаторов привело также к изменению закона зависимости скорости горения от давления. [c.309]

    Экспериментальные данные, полученные с помощью дериватографического анализа, указывают на влияние аталитических добавок (Ре, РегОз, ферроцен) на пр оцессы йзаимодействия продуктов разложения компонентов при температуре ниже температуры поверхности при горении. Определенный интерес представляют наблюдения за изменением структуры горящей поверхности при введении в состав смеси катализаторов горения. На всех смесях с добавкой. катализатора отмечается появление на поверхности горения отдельных ярко светящихся очагов размером 100—200 мкм (рис. У.29). Поскольку число очагов значительно меньше среднего вероятного числа частиц катализатора на поверхности горения, возникает предположение о возможной агломерации частиц катализатора на поверхности горения. [c.309]

    Попытка получить активный железный катализатор, активированный только щелочью (КгСОз) и не содержащий меди, восстановленный водородом при 250°, не увенчалась успехом. При дополнительном восстановлении этого катализатора водородом при 340° получился малоактивный катализатор. Введение в этот катализатор (100 Ре 0,5 К2СО3) меди из расчета 25% на железо и аналогичное восстановление водородом позволили получить активный катализатор, который синтезировал жидкие и твердые углеводороды. Этот катализатор содержал а-РегОз И РезО, . Таким образом, добавка меди катализирует процесс восстановления окиси железа и снижает температуру восстановления. [c.188]

    Приведенные в табл. данные свидетельствуют о высокой изомери-зующей способности модифицированных скелетных никелевых катализаторов. Введение в N1—А1 сплав компонентов Рс1, Ад, 8п, Ре увеличивает активность катализатора в реакции перемещения —С = С-связи, при этом коэффициент миграции (Л игр) возрастает от 0,66 до 0,70— 0,77, а добавки Си, Мп, 2п уменьщают его до 0,43—0,52. Введение Т1, Мо в бинарный сплав не оказывает влияния на изомеризующую способность скелетного никеля. [c.23]

    Состав КСП-1 (ТУ 6-10-11-3—76). Состав представляет собой пастообразную дисперсию пигментов и наполнителей в креглнийорганическом лаке с добавкой катализатора А-39 (ТУ 6-10-11-2—76). Кремнийоргани-ческий состав КСП-1 выпускается комплектно в виде двух полуфабрикатов — пасты и катализатора, смешиваемых перед употреблением из расчета 10 г катализатора на 100 г пасты. Жизнеспособность состава после введения катализатора — до 6 ч при температуре 18—20 °С. [c.76]

    Природа растворителя меньше влияет на скорость процесса созревания раствора Si(O 2Hs)4, чем добавки катализатора. Условия образования пленок в разных растворителях существенно меняются из-за разницы в поверхностном натяжении и температуре испарения растворителей. Введение, например, незначительных количеств спиртов с большим, чем этиловый, молекулярным весом (бутилового или изоамилового), обусловливает лучшее смачивание поверхности стекла и приводит к образованию пленок более равномерных по толщине. [c.51]

    Образованию дигидроперекиси может способствовать добавка минеральной кислоты в качестве катализатора. Введение кислоты в реакционную смесь приводит к трем положительно заряженным интермедиатам (1П, IV, V) в результате атаки протона в положения 1, 3, 4 [c.101]

    Существенное повышение активности и селективности оловосурьмянооксидного катализатора достигается его модифицированием. Для парциального окисления низкомолекулярных олефинов предлагаются Sn-Sb-оксидные катализаторы с добавками различных элементов (см. табл. 2.18). Введение Si О2 улучшает механические свойства катализатора и повышает избирательность парциального окисления олефинов. Улучшает свойства катализаторов введение в их состав оксида Ti, Сг, Fe, Со, V, Си, Мо, U, W или Ре. Исследование окисления и окислительного аммонолиза пропилена на Sn-Sb-Fe -оксидном катализаторе показало, что этот катализатор мало отпи- [c.103]

    В табл. 92 приведены данные по структуре молибдата висмута с различными добавками. При введении окиси калия, лития и бария исходная р-фаза молибдата висмута переходит в а-фазу. Такая же картина наблюдается при добавлении окислов кобальта и никеля в висмут-молибденовые катализаторы. При модифицировании молибдена висмута окисью лития на дебаеграмме образца появляются также слабые линии решетки v-фaзы. Ранее изменение структуры висмут-молибденовых катализаторов наблюдалось при введении фосфат-иона при добавлении 0,7—1,0 атомн. % фосфора в р-фазу последняя частично превращается в а-фазу. [c.314]

    До сих иор не удалось окислить пропилен в окись пропилена на серебряных катализаторах с таким же хорошим выходом, как в случае превращения этилена в окись этилена. При 130—260 °С и времени контакта 0,6—6 с получали менее чем 0,07% окиси пропилена [29, 301. Основными продуктами реакции были СО2 и вода. Введение промоторов должно улучшать выход. Для этого рекомендуются добавки СиО к катализатору из AgjO в этом случае при 160—180 °С получается окись пропилена, при повышении температуры — акролеин [31]. Были предложены катализаторы на основе Ag/Au и Ag/Au/ u [32]. [c.81]

    Окисление пропилена в присутствии СиО на Si — реакция первого порядка по отношению к кислороду и нулевого порядка по отношению к пропилену [69], поэтому скорость окисления возрастает с увеличением концентрации кислорода [64]. Селективность образования акролеина повышается с ростом концентрации пропилена [64—66]. Водяной пар является лучшим разбавителем по сравнению с пропаном или азотом (при конверсии 6% оптимальный выход 70%) [70—71]. Образование СОа уменьшается при введении водяного пара. Тем самым повышается и селективность оптимальная концентрация пропилена будет 10% [72]. Лучше всего действует добавка 40% водяного пара (при 340—400 °С), выше этого цоказателя катализатор становится нестойким [73]. [c.97]

    Гетерогенные катализаторы редко применяются в виде индивидуальных веществ и, как правило, содержат носитель и различные добавки, получившие название модификаторов. Цели их введения разнообразны повышение активности катализатора (промоторы), его избирательности и стабильности, улучшение механических и структ урных свойств. Фазовые и структурные модификаторы стабилизируют соответственно активную фазу и пористую структуру повар шости катализатора. [c.83]

    В работе [164] исследовано влияние добавки хрома к алюмоплатиновому катализатору [Pt r = 5 l (по массе)] на механизм дегидроциклизации н-гексана. Авторы пришли к заключению, что ароматизация н-гекса-на на алюмоплатиновом и алюмоплатинохромовом катализаторах протекает по сходному механизму. Основными направлениями превращений н-гексана на обоих катализаторах являются гидрокрекинг, дегидрирование, скелетная изомеризация, Сб-дегидроциклизация и ароматизация. На основании кинетических данных высказано предположение об образовании при введении добавки хрома в алюмоплатиновый катализатор большого числа слабоактивных центров. [c.247]

    Влияние водорода. О применении водорода под давлением для подавления побочных реакций при изомеризации н-пентана сообщалось различными исследователями [21, 34, 72]. В контрольных опытах, в которых н-пентан нагревался с хлористым алюминием под давлением азота, в результате побочных реакций ббльшая часть пентана превращалась в бутаны, гексаны и более высококипящие алканы, а катализатор — в вязкую красную жидкость [34]. Как побочные реакции, так и изомеризация почти полностью подавлялись при применении вместо азота водорода при начальном давлении 100 ат и температуре 125°. П0лон<ительное влияние на реакцию изомеризации оказывало введение в водород некоторого количества хлористого водорода. Степень изомеризации увеличивается с повышением содержания хлористого водорода. Хорошие выходы изопентана были получены также при добавке к реагентам вместо хлористого водорода небольшого количества воды или когда в качестве катализатора применялся технический хлористый алюминий, содержащий от 15 до 20% несублимированпого вещества, даже без добавок хлористого водорода. [c.23]

    Увеличению механической прочности и термической стойкости носителя способствует введение в его состав спекающихся добавок, к которым относится борная кислота, окислы лития, магния, кальция, титана, хрома и других металлов. Особенностью этих добавок является то, что они существенно улучшают спекание и способствуют упрочнению окисноалюминиевых носителей при использовании их в небольшом количестве (0,4—1,5%). Добавка небольшого количества (1—10%) полевого шпата к окиснокремниевому носителю также облегчает его спекание при низкотемпературном обжиге и позволяет получить очень прочный катализатор без потерн пористости. [c.29]

    Катализатор получают смешиванием гидроокиси алюминия или гидроокисей алюминия и магния с раствором нитратов никеля и уранила с последуюш,им введением (при перемешивании) раствора карбоната калия. Он формуется в виде гранул методом экструзии при добавке к массе связующего. Катализатор может быть приготовлен также пропиткой сформованного носихеля (окись алюминия или шпинель) растворами солей никеля и уранила с последующей нропиткой раствором КОН или прокаливанием шихты из смеси сухих солей составляющих компонентов [c.68]

    Цеолитсодержащие катализаторы (цеолиты) характеризуются сочетанием высоких адсорбционных и каталитических свойств, большой избирательной способностью и стабильностью структуры, поэтому в настоящее время большое значение приобретают синтетические катализаторы с добавками цеолитов. При введении пх, например, в состав алюмосиликатного катализатора крекинга значительно повышается его активность, избирательность, адсорбционная способность и паротермостабильность. Цеолиты могут быть получены как шариковые, так п микросферические. [c.14]

    Введение в катионзамещенный цеолит другого катиона методом пропитки или катионного обмена [54] меняет активность катализатора во всех реакциях превращения бутенов, причем это изменение зависит и от метода введения добавки. Введение никеля методом пропитки ингибирует побочное образование пропилена и высших углеводородов. Введение никеля методом катионного обмена, наоборот, повышает выход пропилена с 29 до 36% и понижает активность катализатора в изомеризации н-бутенов. Так, на цеолите СаУ с 5% N1, полученном пропиткой, отношение буте-ны-2 бутен-1 составляет 3,1, а на катализаторе, полученном обменом, оно равно 2,7. (Лттимальным, по данным [54], оказалось содержание N1, равное 1%). [c.164]

    Разработанные и внедренные в ряде стран процессы гидрирования масляных дистиллятов и деасфальтизатов дают возможность в одном каталитическом процессе достичь результатов, получаемых сочетанием глубокой селективной очистки и гидроочистки. Процесс обычно осуществляют под давлением 15— 30 МПа, при температуре 340—420°С, скорости подачи сырья 0,5—1,5 ч и объемном отнощении водородсодержащего газа к сырью 500— 1500. В качестве катализаторов можно применять катализаторы гидроочистки или более активные — сульфидновольфрамовый, ни-кельвольфрамовый на окисноалюминиевом носителе (алюмони-кельвольфрамовый) и др. Для повышения активности применяют промотирующие добавки, придающие катализатору кислотные свойства, — двуокись кремния, галоиды. Введение такой добавки способствует более интенсивному гидрированию азотсодержащих соединений и конденсированных ароматических углеводородов. Благодаря применению высокого давления и активных катализаторов реакции гидрирования протекают весьма глубоко — практически все компоненты, удаляемые при селективной очистке в виде экстракта, превращаются в целевые продукты. Гидрированием под высоким давлением в промышленном масштабе производят базовые высококачественные масла различного назначения индустриальные, турбинные, моторные, гидравлические, веретенные. В зависимости от вида сырья выход масел с одинаковым индексом вязкости при гидрировании равен или несколько выше, чем при селективной очистке. Вырабатываемые масла по эксплуатационным свойствам превосходят масла селективной очистки, особенно по стабильности и, следовательно, по сроку службы. [c.308]

    Применение. Лантаноиды применяют как добавки к различным сплавам. Введение Се в сталь значительно улучшает ее свойства, так как Се связывает растворенную в стали серу и выводит ее в шлак. Из стали, содержащей 6% Се, изготовляют хирургические инструменты. Введение лантаноидов в магниевые сплавы повышает их прочность (из этих сплавов делают детали самолетов и ракет). Оксиды ЬпгОз, СеОз используют как катализаторы и промоторы для катализаторов. Лантаноиды входят в состав многих лазерных материалов, в частности широко применяют лазеры из стекла, содержащего N(1. Пропитка солями Ьп углей дуговых ламп для кг носъемок сильно увеличивает яркость света. [c.606]

    Введением различных добавок к AI I3 можно менять селективность образования того или иного изомера алкилбензола. По-видимому, это объясняется тем, что в присутствии растворителя метилциклогексана и добавки изменяется структура промежуточного реакционного комплекса и прочность связи между органическими компонентами и катализатором в этом комплексе. Однако каталитические свойства и механизмы этих реакций изучены пока недостаточно. Но уже сейчас можно отметить ряд важных для катализа особенностей этих соединений. Одна из них —большее число, чем с AI I3, вероятных маршрутов химических превращений. [c.146]


Смотреть страницы где упоминается термин Добавки к катализаторам введение: [c.200]    [c.34]    [c.58]    [c.66]    [c.33]    [c.181]    [c.160]    [c.54]    [c.490]    [c.127]    [c.234]   
Окисление углеводородов на гетерогенных катализаторах (1977) -- [ c.160 , c.186 ]




ПОИСК







© 2025 chem21.info Реклама на сайте