Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фосфодиэфирные связи в нуклеиновых кислотах

    Нуклеиновые кислоты — фосфорсодержащие биополимеры, которые построены из остатков нуклеозидов (М-гликозидов рибозы или дезоксирибозы и производных пиримидина и пурина), связанных между собой фосфодиэфирными связями (рис. 101). [c.715]

    Из характера межнуклеотидной связи следует также, что нуклеиновые кислоты — это неразветвленные полимеры. Лишь в очень редких случаях (они относятся, как правило, к промежуточным продуктам биосинтеза РНК) 2 -гидроксильная группа нуклеотидных остатков может использоваться для образования дополнительной фосфодиэфирной связи (ем. гл. VIH, раздел 4). [c.11]


    Под первичной структурой нуклеиновых кислот понимают порядок, последовательность расположения мононуклеотидов в полинуклеотидной цепи ДНК и РНК. Такая цепь стабилизируется 3, 5 -фосфодиэфирными связями. Поскольку молекулярная масса нуклеиновых кислот колеблется в широких пределах (от2 10" до 10 —10 ), установить первичную структуру всех известных РНК и особенно ДНК весьма сложно. Тем не менее во всех нуклеиновых кислотах (точнее, в одноцепочечной нуклеиновой кислоте) имеется один и тот же тип связи-3, 5 -фосфодиэфирная связь между соседними нуклеотидами. Эту общую основу структуры можно представить следующим образом  [c.105]

    В результате независимо гидролизуются различные фосфодиэфирные связи нуклеиновой кислоты. При определенных условиях каждая фосфодиэфирная связь подвергается действию нуклеазы, но при этом гидролиз данной связи происходит только в ограниченном числе молекул ДНК. Если РНК-полимераза блокирует доступ нуклеазы к ДНК, то определенные связи вообще не будут разорваны. [c.141]

    Соединения, имеющие одну или несколько гликозидных связей, имеют больщое значение в биохимии. Это основная связь, с помощью которой образуются олиго- и полисахариды. Таким образом, гликозидная связь в химии углеводов имеет такое же значение, какое в белковой химии имеет пептидная связь, а в химии нуклеиновых кислот — фосфодиэфирная. В природе встречается большое разнообразие гликозидов. Многие из них применяют в пищевой промышленности и медицине  [c.229]

    Нуклеиновые кислоты. Природные полинуклеотиды, в которых нуклеотидные остатки соединены между собой в определенной последовательности фосфодиэфирными связями. [c.1015]

    Эндонуклеаза. Фермент, способный гидролизовать внутренние фосфодиэфирные связи в нуклеиновых, кислотах. [c.1022]

    Однако, прежде чем говорить о распространении или о структурных и функциональных особенностях отдельных полисахаридов, следует, вероятно, сказать несколько слов об общем состоянии структурных исследований в этой области. В последние годы здесь достигнуты большие успехи. Ежегодно удается выделить 10—20 новых полисахаридов. Определение последовательности моносахаридов в полисахаридах в некоторых отношениях легче, а в некоторых — труднее, чем определение последовательности мономеров в полипептидах или нуклеиновых кислотах. Легче оно главным образом потому, что полисахариды обычно построены из относительно небольшого числа повторяющихся единиц и каждый мономер повторяется на протяжении всей молекулы регулярным образом. В противоположность этому индивидуальные аминокислоты или нуклеотиды, по-видимому, распределены беспорядочно или почти беспорядочно в молекулах соответствующих полимерных соединений. Если полисахарид строго регулярен, то определения структуры повторяющейся единицы и молекулярного веса полимера достаточно для установления его полной первичной структуры. Однако в большинстве случаев встречаются некоторые особенности (например, наличие в молекуле точек разветвления), которые в значительной степени усложняют задачу. Главным осложняющим фактором в химии полисахаридов является наличие нескольких типов связей между остатками моносахаридов. В отличие от белков, в которых все аминокислотные остатки связаны пептидными связями, и от нуклеиновых кислот, в которых нуклеотиды всегда соединены между собой 3, 5 -фосфодиэфирными связями, молекулы полисахаридов могут содержать различные связи а-(1 2), р-(1 3), а-(1 4) и т. д. Что касается числа типов мономерных единиц в отдельных полисахаридах, то в этом последние более сходны с нуклеиновыми кислотами, чем с белками в пределах одной молекулы полисахарида редко встречается более четырех типов мономеров. Стоит отметить как общее правило, что установить последовательность мономеров в полимере, содержащем малое число типов мономерных звеньев,. гораздо труднее при большом числе типов эта задача решается проще. [c.265]


    Нуклеиновыми кислотами принято называть фосфорсодержащие биополимеры, построенные из остатков нуклеозидов — Ы-гли-козидов пентоз, производных гетероциклических оснований ряда пурина или пиримидина остатки нуклеозидов соединены в полимерной цепи фосфодиэфирными связями. При расщеплении нуклеиновых кислот образуются с высоким выходом нуклеозиды или их фосфорные эфиры — нуклеотиды. [c.25]

    Структуры смешанных биополимеров чрезвычайно сложны, а их подробное изучение в сущности лишь только начинается. В отличие от полисахаридов систематически описать и классифицировать типы структур смешанных биополимеров весьма затруднительно прежде всего из-за ограниченного количества надежно и полно расшифрованных структур. Укажем лишь, что связь олиго-или полисахаридной компоненты с пептидной, белковой или липидной осуществляется обычно при помощи гликозидной связи либо по гидроксильным группам (например, в остатках оксиаминокислот пептидной цепи), либо по амидной группе амидов двухосновных аминокислот. Возможна также фосфодиэфирная связь, подобная той, которая лежит в основе строения нуклеиновых кислот. [c.44]

    Реакции, приводящие к расщеплению фосфоэфирных (в особенности фосфодиэфирных) связей, занимают особое место в ряду других химических превращений нуклеиновых кислот и их компонентов. Они являются основой аналитических методов, используемых для определения состава и строения нуклеиновых кислот. Хотя в настоящее время химические методы гидролиза фосфоэфирных связей в значительной степени уступили место ферментативным, позволяющим проводить такое расщепление в более мягких условиях и более специфично, тем не менее возможности химических способов гидролиза еще далеко не исчерпаны. [c.541]

    Лпазы, катализирующие расщепление связи углерод—кислород (КФ 4.2), могут приводить к-деполимеризации полисахаридов (полисахарид-лиазы, КФ 4.2.2) путем отнятия молекулы спирта от мономерных звеньев. Изомеразы в ряде случаев катализируют перегруппировки 8—5-связей в белках (КФ 5,3.4). Наконец, лигазы (синтетазы) катализируют ацилирование транспортных РНК соответствующими аминокислотами (1<Ф 6,1.1) и восстанавливают разрушенные фосфодиэфирные связи в нуклеиновых кислотах (КФ 6.5). [c.7]

    Расщепление фосфодиэфирных связей, особенно в ряду полирибонуклеотидов, может происходить под действием разнообразных реагентов в широком интервале значений pH (в том числе и близких к нейтральному) и при различных температурах. Поэтому знание границ устойчивости фосфодиэфирных связей при работе с биологически активными нуклеиновыми кислотами и полинуклеотидами особенно важно. [c.541]

    Некоторые другие реакции нуклеиновых кислот, приводящие к расщеплению фосфодиэфирных связей  [c.593]

    В нуклеиновых кислотах мономерные остатки связаны между собой фосфодиэфирными связями,. Как в ДНК, так и в РНК эта связь осуществляется только за счет З -ОН одного нуклеозндного сстат-ка и 5 -0Н другого (рис. 3). Поэтому межнуклеотидную связь называют 3 —5 -фосфодиэфирной. Отсюда следует, что лолинуклеотидные цепи ДНК л РНК полярны и их концевые остатки неравноценны если рассматривать нефосфорилированный по концам полинуклеотид, то на одном конце он будет содержать 5 -, а на другом конце — З -ОН. Эти концы называют 5 - и З -концами цепи, соответственно. [c.11]

    При облучении водных растворов оснований нуклеиновых кислот видимым светом в присутствии ионов двух- и трехвалентного железа в нейтральной или слабокислой среде гетероциклические основания полностью или частично расщепляются, о чем свидетельствуют изменения УФ-сиектров растворов. Пиримидины расщепляются при этом быстрее пуринов В аналогичных условиях нуклеозиды и нуклеотиды наряду с частичной деградацией составляющих оснований претерпевают расщепление N-гликозидной связи с выделением свободного основания. При облучении полинуклеотидов наблюдаются те же процессы, сопровождающиеся, кроме того, частичным гидролизом фосфодиэфирных связей и потерей биологической активности [c.685]

    Идентификация модифицированных нуклеотидных остатков в полинуклеотидной цепи РНК долгое время была задачей особой трудности. С появлением современных методов секвенирования нуклеиновых кислот она существенно упростилась. Модификацию РНК или ее расщепление ферментами ведут таким образом, чтобы (как и при секвенировании) было затронуто в среднем только одно звено на молекулу (в чем есть дополнительный смысл, так как множественная модификация РНК искажает ее структуру). Далее, если изучается РНК небольшого размера или сегмент РНК, примыкающий к одному из ее концов, то этот конец метят радиоактивной меткой и задача идентификации модифицированного основания (после расщепления соответствующего звена) или атакованной нуклеазой межнуклеотидной связи сводится, как и при секвенировании, к определению длины фрагмента по его подвижности в высокоразрешающем электрофорезе в геле. В том случае, когда анализируемый район удален от концов молекулы на расстояние больше 150—200 н. о., используют реакцию обратной транскрипции (см. гл. 13). Для этого синтезируют олигонуклеотид, комплементарный участку РНК, расположенному вблизи от анализируемого района с З -концевой стороны молекулы, и далее используют его как праймер для обратной траискриптазы. Так как этот фермент останавливается на модифицйрованных остатках матрицы (или в том месте, где расщеплена фосфодиэфирная связь), то вновь по длине образующегося фрагмента можно определить положение модифицированного звена в РНК. [c.40]


    Экзоиуклеаза. Фермент, гидролизующий только концевую фосфодиэфирную связь нуклеиновой кислоты. [c.1022]

    Такое планирование оправдано в тех случаях, когда потенциальное исходное соединение является бросовым товаром (например, является отходом того или иного производства и желательна его рациональная утилизация, либо когда в целевой молекуле легко распознать структурные фрагменты, отвечающие доступным соединениям. Наиболее выразите.льньш примером второй ситуации может служить синтез биополимеров (белков, полисахаридов, нуклеиновых кислот). Все они построены из небольших мономерных блоков, соединенных через гетероатомы. Такими мономерами для полипептидов и белков являются аминокислоты, для полисахаридов — моносахариды, а для нуклеиновых кислот — нуклеотиды. В биополимерах эти мономеры соединены амидной, 0-гли-козидной и фосфодиэфирной связями соответственно. Такие связи легко расщепляются при химическом или ферментативном гидролизе. Обратное превращение — сборка межмономерных связей — представляет собой обыч- [c.295]

    В ходе Р. рост цеш1 осуществляется благодаря взаимод. дезоксирибонуклеозидтрифосфата с З -ОН концевым нуклеотидом уже построенной части ДНК при этом отщепляется ш1рофосфат и образуется фосфодиэфирная связь. Рост полинуклеотидной цепи (рис. 2) идет только с ее З -конца, т. е. в направлении 5 3 (см. Нуклеиновые кислоты). Фермент, катализирующий эту р-цшо,-ДНК-полиме-раза (см. Полидезоксирибонуклеотид-синтетазы)-пе способен начать матричный синтез на одноцепочечной ДНК, если нет хотя бы олигонуклеотидного биспирального участка (т. наз, затравочного ол ггонуклеотида) комплементарного матрице затравочным олигонуклеотидом во мн. случаях является не ДНК, а РНК. [c.252]

    Нуклеиновые кислоты являются биополимерами, состоящими из четырех разных мономеров — нуклеотидов, связанных между собой фосфодиэфирными связями между 5 -фосфатом одного нуклеотида и З -гидрок-сильной группой углеводного компонента соседнего нуклеотида. Нуклеотиды состоят из трех компонентов пиримидинового или пуринового основания, связанного с углеводным компонентом (рибозой или дезоксирибо-зой), и фосфорной кислоты, этерифицирующей углевод по 2, 3 или (наиболее часто) 5 углеродному атому. Нуклеотиды являются сильными кислотами. Они называются соответственно входящему в их состав азотистому основанию — адениловой, гуаниловой, тимидино-вой, цитидиловой и уридиловой кислотами. [c.94]

    С.-один из этапов образования функциональноактивных молекул РНК (процессинг РНК) из их предшественников, к-рый осуществляется после завершения транскрипции (синтез РНК на ДНК-матрице). В результате удаления каждого интрона происходит разрыв двух фосфодиэфирных связей с последующим образованием одной новой (см. Нуклеиновые кислоты). [c.409]

    Поскольку реакции углеводных и гетероциклических остатков в нуклеозидах обстоятельно обсуждались выше (см. гл. 22.2), в этом разделе будут описаны только реакции, затрагивающие атом фосфора в нуклеотидах. Так, будут рассмотрены некоторые детали химического и ферментативного гидролиза моно- и полинуклеотидов, в то время как другие гидролитические реакции нуклеиновых кислот, например кислотная апуринизация, будут лишь упомянуты в связи с тем, что в результате этой реакции происходит увеличение лабильности фосфодиэфирной связи. [c.140]

    Нуклеиновые кислоты представляют собой полинуклеотиды, в которых отдельные нуклеотиды связаны фосфодиэфир-ными мостиками, образующимися в результате этерификации гидроксильной группы при одного полинуклеотида остатком фосфорной кислоты при С другого нуклеотида. Фосфо-диэфирная связь характерна и для РНК, и для ДНК, так как в её образовании не участвует атом замещение которого отличает РНК и ДНК друг от друга. Доказательства наличия фосфодиэфирных мостиков получены при изучении результатов ферментативного гидролиза нуклеиновых кислот. Последовательный гидролиз нуклеиновых кислот панкреатической дезоксирибонуклеазой и фосфоди эстеразой змеиного яда приводит к образованию нуклеозид-З -фосфатов. При гидролизе панкреатической дезоксирибонуклеазой в комбинации с фос-фодиэстеразой селезёнки получаются нуклеозид-З -фосфаты. Изображение структуры нуклеиновых кислот привычными структурными формулами (формула а на приводимой далее схеме) оказывается слишком громоздким, поэтому для описания последовательностей нуклеиновых кислот можно использовать более краткие записи. В первом варианте (запись б на приводимой схеме) остатки пентоз изображаются горизонтальными линиями, на которых указаны условные положения всех атомов углерода пентозы, участвующих в образовании молекулы (Г, 3 и 5 ). На конце черты возле атома С указывают обозначение нуклеинового основания (на приведённой схеме тимин, аденин и гуанин), а атомы С и С соединяют через атом Р. Второй вариант обозначения (запись в) — буквенная система, в которой используются буквенные обозначения нуклеиновых оснований (А, О, Т, U, С), а фосфатная группа обозначается буквой "р . Если она находится справа от обозначения нуклеинового основания, это означает, по зтери-фицирована группа при С , а если слева — при С . [c.115]

    Если принять во внимание способ образования нуклеиновых кислот при биосинтезе (т.е. синтезе в живых организмах или с помощью ферментных систем, выделенных из живых организмов), то их следует рассматривать как полимеры, образованные нуклеозид-5 -фосфатами. При этом каждый остаток фосфорной кислоты мономера, кроме концевого, связан фосфоэфирной связью с 3 -ОН-груп-пой соседнего мономерного звена. На рис. 7 приведена структура примыкающих к концам фрагментов нуклеиновой кислоты с некоторой произвольной последовательностью нуклеотидов. Видно, что все остатки фосфорной кислоты, кроме одного, образуют фосфодиэфирные группы и все 3 -гидроксигруппы, кроме одной, участвуют в образовании фосфоэфирных связей. Остаток, содержащий 5 -фосфомоноэфирную группу, называют 5 -концевым, а остаток, содержащий не-этерифицированную 3 -гидроксигруппу, — 3 -концевым. [c.51]

    Эти ферменты известны под общим названием эндонуклеазы рестрикции. Термин эндонуклеаза означает, что фермент катализирует расщепление нуклеиновой кислоты по внутренним фосфодиэфирным связям в отличие от зкзонуклеаз, катализирующих отщепление концевых звеньев нуклеиновой кислоты (к их числу относится упоминавшаяся в 7.3 фосфодиэстераза из змеиных ядов). Сокращенно эндонуклеазы рестрикции называют рестриктазами. В табл. 7.5 перечислены некоторые из наиболее широко используемых при изучении структуры ДНК и других биохимических исследованиях рестриктазы. [c.276]

    Молекулы нуклеиновых кислот всех типов живых организмов — это длинные не-разветвленные полимеры мононуклеотидов. Роль мостика между нуклеотидами выполняет 3, 5 -фосфодиэфирная связь, соединяющая 5 -фосфат одного нуклеотида и З -гид-роксил остаток рибозы (или дезоксирибозы) следующего. В связи с этим полинуклеотидная цепь оказывается полярной. На одном ее конце остается свободной 5 -0-Ф -группа, на другом З -ОН-группа. [c.177]

    С начала нашего века началось интенсивное изучение продуктов расщепления нуклеиновых кислот. Э. Фишер внес большой вклад в химию пуринов и пиримидинов. а позднее Ф. Левен, Д. Гулланд и др. определили строение углеводных компонентов и природу нукле-озидных звеньев (названия нуклеозид и нуклеотид были предложены Ф. Левеном еще в 1908—1909 гг.). Окончательно строение нуклеозидов, нуклеотидов и роль фосфодиэфирной связи были выяснены в 1952 г. в результате работ английской школы под руководством А. Тодда. [c.296]

    Нуклеиновые кислоты представляют собой биополимеры, построенные из нуклеотидоа, соединенных фосфодиэфирной связью. Каждый нуклеотид, в свою очередь, состоит из остатков гетероциклического основания, углевода и фосфорной кислоты. [c.298]

    Углеводно-фосфатный остов во многом определяет конформацию и физико-химические свойства нуклеиновых кислот. Расщепление нуклеиновых кислот различными ферментами связано со спецификой строения углеводио-фосфатной цепи а частности, многие ферменты отличают дезоксирибонуклеиновые кислоты от рибонуклеиновых, концевую фосфатную группу от группы, участаующей в образовании фосфодиэфирной связи, 5 -фосфат от З -фосфата и т. п. [c.391]

    Последовательно расположенные нуклеотиды в молекулах ДНК и РНК ковалентно связаны друг с другом при помощи фосфатных мостиков . 5 -гидрок-сильная группа пентозы одного нуклеотида присоединена к 3 -гидроксильной группе пентозы соседнего нуклеотида с помощью фосфодюфирной связи (рис. 27-5). Таким образом, ковалентные остовы нуклеиновых кислот состоят из монотонно чередующихся фосфатных и пентозных групп основания же можно рассматривать как боковые группы, присоединенные к остову на равных расстояниях друг от друга. Отметим также, что сахарофосфатный остов и ДНК, и РНК несет заряд, поскольку фосфатные группы являются кислыми и при характерных для клеток pH заряжены отрицательно. Вместе с тем пуриновые и пиримидиновые основания, которые плохо растворимы в воде, гидрофобны. Укажем также, что цехш ДНК и РНК обладают определенной полярностью, цли направлением, поскольку все межнуклео-тидные фосфодиэфирные связи ориентированы вдоль цепи одинаково (рис. 27-5). Благодаря этой полярности каждая по-линуклеотидная цепь имеет 5 -конец и 3 -конец. [c.856]

    Нуклеозиды, являющиеся мономерными составляющими нуклеиновых кислот, связаны друг с другом фосфодиэфирными связями и образуют цепь полинуклеотида. Фосфодиэфирная группировка связывает между собой З -гидроксильную группу остатка одного нуклеозида с 5 -гидроксильной группой остатка соседнего нуклеозида. Таким образом, полинуклеотидная цепь нуклеиновых кислот представляет собой линейную структуру, в которой моно-нуклеозиды связаны между собой 3, 5 -фосфодиэфирными связями, причем мононуклеозиды расположены в цепи в строго определенной для данной нуклеиновой кислоты последовательности. Об- [c.26]

    Присутствие фосфодиэфирной связи в нуклеиновых кислотах как основного типа межмономерной связи было установлено на основании результатов потенциометрического титрования Структура V (Й = Н) для ДНК—единственный возможный тип структуры, согласующийся с выделением дезоксинуклеозид-5 -фосфатов УП при ферментативном гидролизе ДНК (под действием фосфоди-эстеразы кишечника ) и 3, 5 -дифосфатов пиримидиновых [c.41]

    Правильность структуры V для ДНК и РНК, предложенной впервые Тоддом и Брауном подтверждается и более новыми данными, в частности идентичностью синтетических олигонуклеотидов с 3 —5 -фосфодиэфирными связями и продуктов расщепления нуклеиновых кислот. [c.43]

    Таким образом, в данной главе рассмотрены реакции расщепления и перегруппировок гетероциклических оснований нуклеиновых кислот, часть которых широко применяется при структурных исследованиях полимеров. Однако для исследования структуры нуклеиновых кислот после селективного удаления одного основания или группы оснований необходимо провести специфическое расщепление фосфодиэфирных связей, так чтобы затрагивались только те из них, которые соединяют с остальной частью молекулы образующиеся после удаления оснований углеводные остатки со свободным гликозидным центром. Эта проблема неразрывно связана с химией фосфоэфиров и фосфодиэфиров углеводов, рассматриваемых далее. [c.480]

    После того как было установлено, что рибонуклеиновые кислоты состоят в основном из четырех мононуклеотидных единиц, в течение многих лет отсутствовали точные сведения относительно характера межнуклеотидных связей и поэтому было высказано множе- ство предположений. Многие предполагаемые структуры включали пирофосфатные, полифосфорные, эфирные и фосфоамидные связи, но относительно простая тетрануклеотидная структура, предложенная Левиным [65, 66] и содержавшая фосфодиэфирные связи между углеводными компонентами нуклеозидов, лучше всего, как позже было выяснено, соответствовала действительности. Хотя в настоящее время тетрануклеотидная теория строения нуклеиновых кислот полностью оставлена, уместно, быть может, упомянуть, что эта теория была в свое время значительно точнее тринуклеотидной теории [67, 68], с которой она находилась в оппозиции, и что, как писал сам Левин, с другой стороны, нужно иметь в виду, что истинный молекулярный вес нуклеиновых кислот до сих пор еще неизвестен. Тетрануклеотидная теория (заметьте) — это минимальный молекулярный вес, а нуклеиновая кислота может представлять кратное его умножение [69]. Кроме того, возможно, что материал, названный тогда нуклеиновой кислотой, был очень низкого молекулярного веса и средняя длина его цепи составляла пять или [c.371]


Смотреть страницы где упоминается термин Фосфодиэфирные связи в нуклеиновых кислотах: [c.123]    [c.498]    [c.507]    [c.253]    [c.295]    [c.304]    [c.263]    [c.467]    [c.594]    [c.336]    [c.336]   
Биохимия растений (1966) -- [ c.468 , c.473 , c.477 , c.478 , c.481 ]




ПОИСК





Смотрите так же термины и статьи:

Нуклеиновые кислоты



© 2025 chem21.info Реклама на сайте