Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дитизон в фотометрическом анализе

    При определении валовых форы микроэлементов по К.В. Веригиной образец почвы обрабатывают смесью плавиковой и серной кислот (после прокаливания в муфеле для удаления органических веществ). Остаток после разложения почвы переводят в солянокислый раствор и извлекают из него в виде комплексных дитизонатов медь (при pH 2), смесь цинка и кобальта (при pH 8,2). Разрушив дитизонат, определяют медь фотометрически в виде комплекса с диэтилдитиокарбаминатом. Поскольку дитизонат цинка легко разлагается разбавленной хлороводородной кислотой, его отделяют от кобальта и определяют фотометрически с дитизоном. Содержание кобальта определяют также фотометрически в виде оранжево-красного комплекса с нитрозо-К-сояью (после разрушшия дитизоната). Таким образом, метод К.В. Веригиной позволяет определять фотометрически три микроэлемента из одной порции раствора. Однако, извлекая медь дитизоном, приходится строго выдерживать pH 2, так как при pH 3 уже возможно частичное соизвлечение цинка, а при pH 6 — даже кобальта. Помимо э гого длительные операции извлечения цинка и кобальта в виде дитизонатов, последующее разрушение дитизоната цинка для отделения от кобальта, повторная экстракция дитизоном, разрушение дитизоната кобальта смесью неорганических кислот — все это сильно усложняет анализ, делает его громоздким. В этом случае также целесообразнее отделять кобальт от цинка методом ионообменной хроматографии. [c.356]


    Для фотометрического определения ртути преимущественно используют серо- и азотсодержащие реагенты, образующие прочные комплексы с металлом. Одним из наиболее широко распространенных для этих целей реагентов является дитизон. Несмотря на свою невысокую селективность, дитизоновый метод ранее принят в США в качестве стандартного для определения ртути в питьевых водах [583] и до сих пор широко используется в рутинных анализах [45, 153]. Он отличается быстротой, хорошей воспроизводимостью, низкой стоимостью анализов [456]. Однако определению рту- [c.112]

    Вторая намечающаяся тенденция в развитии фотометрического анализа с применением органических реагентов, также парадоксально вытекающая из отсутствия специфических реагентов — это применение в аналитической практике ограниченного числа реагентов, пригодных для определения многих элементов, т. е. групповых реагентов. В этом случае необходимая избирательность для каждого элемента обеспечивается выбором соответствующих условий определения, применением маскирующих комплексообразующих реагентов и т. д. или же применением другого, дополняющего реактива. Примерами групповых реактивов являются дитизон, ксиленоловый оранжевый, арсеназо HI и др. [c.132]

    Наиболее важным для фотометрического анализа реактивом, содержащим тионную и тиольную группы, является дифенилтиокарбазон, который сокращенно называется дитизон. [c.309]

    Дитизон синтезировал Э. Фищер [47] в 1878 г., но только в 1925 г. Гельмут Фишер [48] показал его способность реагировать с тяжелыми металлами с образованием внутрикомплексных соединений. Реактив оказался весьма ценным и широко применяется в фотометрическом анализе [49]. [c.309]

    Техника фотометрического анализа с применением аналогов дитизона не отличается от техники работы с дитизоном, [c.325]

    Герман и Шнейдер [254] проверили ряд реактивов для фотометрического определения содержания различных веществ. Было показано, что из четырех исследованных веществ только одно является индивидуальным соединением. Например, проба дитизона дала на пластинке с силикагелем три пятна, каждое из которых приобретало различную окраску после обработки основным контрольным раствором, содержавшим РЬ . Авторы пришли к выводу, что необходимо проверять чистоту реагентов для фотометрического анализа во избежание получения ошибочных значений коэффициента поглощения. [c.473]


    После переведения всего золота в форму AU I4 его концентрируют. Для этого можно использовать иониты [629] или другие способы концентрирования. Из цианидного раствора объемом до 500золото осаждают на цинковой пыли [861] (см. главу 4), восстанавливают цинком в присутствии солей свинца [1526], алюминиевой фольгой [1359], соосаждают с сульфидом кадмия [249] (см. главу 4), восстанавливают перекисью водорода при анализе богатых золотом цианидных растворов электролитических ванн [1260]. Определение заканчивают гравиметрически (260, 861, 1260, 1292, 1359, 1526). Часто золото определяют титриметрически. В качестве титрантов используют гидрохинон 1 192, 204, 212], дитизон [939, 1114], иодид калия [551, 776, 778] с оттитровы-ванием выделившегося иода подходящим титрантом (см. главу 5). Весьма перспективны фотометрические и особенно экстракционно-фотометрические методы определения [74 а, 135, 136, 593 (см. главу 6), 732, 746, 875, 1335]. Г азработаны полярографические [180, 849, 1117, 1183], химико-спектральные [518, 1354], атомно-абсорбционные [1003, 1406, 1435] методы, позволяющие определять 0,01—100 мг/л золота. Методы определения золота в цианидных растворах рассмотрены в работе [74а]. [c.203]

    Содержание серебра можно определить и фотометрически. В этом случае встряхивают подкисленный раствор серебра, содержащий до 25 мкг металла, с 10 мл раствора дитизона 30 сек. Если концентрация серебра не превышает 15 мкг, то для большей точности анализа применяют 5 мл раствора дитизона. После отстаивания и разделения фаз органическую фазу сливают в кювету для фотометрирования и измеряют оптическую плотность раствора с оранжевым или желтым светофильтром. Содержание серебра находят по калибровочному графику, построенному в аналогичных условиях. [c.110]

    Дитизон — реагент, очень широко применяемый в анализе. Хорошо известно его применение для экстракционно-фотометрического определения малых концентраций тяжелых и цветных металлов [88]. Значительно меньше обращается внимание на универсальность этого реагента при его использовании для титриметрического анализа он выполняет функций и индикатора, и титранта. Почти во всех случаях применение дитизона связано с введением второй жидкой фазы. Сначала остановимся на применении дитизона в качестве индикатора в разных титриметрических методах. [c.71]

    Для фотометрического анализа большое значение имеют окрашенные комплексные соединения, в которых полоса поглощения обусловлена главдым образом электронными переходами в лиганде. К этой группе относятся соединения красителей с различными металлами. Особое значение рассматриваемая группа имеет для фотометрического определения металлов, не обладающих хромофорными свойствами, как, например, бериллий, магний, алюминий, индий, олово и многие другие. Органические реактивы типа красителей имеют известное значение также для определения элементов, имеющих собственные хромофорные свойства. Правда, для этих элементов реакции с органическими красителями менее специфичны, но зато они более чувствительны. Например, определение меди в виде аммиаката, разумеется, более специфично, чем определение меди дитизоном. Присутствие серебра, цинка, кадмия и других элементов, не имеющих хромофорных свойств, не мешает определению меди в виде аммиаката. Однако чувствительность определения мала молярный коэффициент светопоглощения аммиаката меди (е 3+) равен 120 [15]. [c.77]

    Число реагентов, пригодных для определения микроколичеств серебра, сравнительно невелико [1—5]. Практически почти все фотометрические методы определения одновалентного серебра связаны с использованием органических реагентов. Одним из самых широко распространенных фотометрических реагентов является дитизон (дифенилтиокарбазон), предложенный Фишером [6,7]. Дитизон образует с серебром два соединения (состава 1 1 в кислой среде и состава 2 1 в нейтральной и щелочной), хорошо экстрагируемые малополярными растворителями. Для анализов в основном используют первое соединение, имеющее коэффициент молярного погашения примерно 27 ООО при 462 нм [8]. Дитизон обладает широким спектром действия, взаимодействует со многими металлами. Селективность определения достигается изменением концентрации водородных ионов в растворе. [c.47]

    При определении висмута дитизоновым методом удается избежать вредного влияния анионов, дающих комплекс с дитизоном, если экстрагирование производить в присутствии щелочного раствора цитрата аммония [357] или крепкой уксусной кислоты [367]. В таких условиях анионы фосфорной и соляной кислот не мешают. определению. Внесены изменения и в дитизоновый метод определения следов кадмия [392] медь и ртуть удаляют, экстрагируя их четыреххлористым углеродом, а большую часть кобальта и никеля—в виде дитизонатов остаток кобальта и никеля после добавления диметилглиоксима экстрагируют хлороформом. Водную фазу подщелачивают и экстрагируют дитизоном в растворе четыреххлористого углерода в заключение содержание кадмия измеряют фотометрически. Этот метод был применен для анализа сушеной зелени, печени, фруктовых соков и испражнений. [c.176]


    Из новых приемов использования экстракции в фотометрическом анализе можно отметить следующие. Раньше экстракт использовали непосредственно для фотометрического определения только в том случае, если экстрагируемое соединение было окрашено (дитизона-ты, оксихинолпнаты, диэтилдитиокарбаминат меди и. т. п.). Однако известно много чувствительных и избирательных экстракционных систем, когда при экстракции образуется пеокрашонное соединение или поглощение (в частности, в ультрафиолете) обусловлено только реактивам. В этих случаях обычно применялась реэкстракция, после чего в водную фазу вводили реагент, дающий окрашенное соединение с определяемым элементом. Вместо этого в ряде работ теперь предлагается подбирать реагент, который дает окрашенное соединение с определяемьш компонентом непосредственпо в неводной фазе. [c.220]

    Элементы, в аимодействующие с дитизоном, представлены в табл. 8 [91 ]. В кислой среде в избытке реагента все указанные элементы образуют с анионом первичные дитизонаты (кетодитизо-наты). Некоторые из этих элементов в щелочной среде и при недостатке реагента образуют с анионом вторичные дитизонаты (енольные дитизонаты). В фотометрическом анализе чаще используют первичные дитизонаты, которые интенсивнее окрашены и более растворимы в органических растворителях, чем вторичные. [c.63]

    Прицип анализа. Определение основано на извлечении ртути из почвы с использованием трубки Пемфильда с последующим фотометрическим анализом соединения ртути с дитизоном. [c.316]

    Медь реагирует с дифенилтиокарбазоном (дитизоном), имеющим зеленую окраску., с образованием продукта красно-фиолетового цвета 44]. Образец должен содержать не более 0,005 мг меди в объеме 5 мл 0,1 н. кислоты. Анализируемый раствор встряхивают в небольшой делительной воронке с 0,001 %-ным раствором дитизона в четыреххлористом углероде. Неводный слой будет содержать смесь дитизоната меди И избытка дитизона. Его исследуют на фотоэлектрическом фотометре в интервале длин волн 500—550 или 600—650 ммк. Калибровочная кривая должна строиться по измерениям свежеприготовленных растворов, непосредственно применяемых в данной серии анализов, так как концентрация реагента сохраняется постоянной лишь в течение нескольких недель. Указанный метод называется методом смешанной, окраски ввиду того, что раствор содержит как окрашенный в красный цвет комплекс, так и избыток реагента зеленого цвета. Если фотометрическое измерение проводится гари длине волны, лежащей з интервале 500—550 ммк, который соответствует зеленой области спектра, то поглощение в этом случае будет пропорциопальным концентрации комплекса, поглощающего в зеленой области, в то время как реагент зеленый цвет пропускает. Если раствор исследуется при длине волны в интервале 600—650 М.МК, поглощение -показывает избыток реагента. Для анализа можно использовать любой из этих вариантов. Дитизон вызывает аналогичную окраску с ионами металлов Мп, Ре, Со, N1, Си, 2п, Рс1, А , Сё, 1п, 5п, Р1, Ли, Нд, Т1 и РЬ. Несмотря на это, надежное определение осуществляется лишь благодаря избирательному действию реагента, достигаемому точной регулировкой значения pH, при котором проводится экстрагирование четыреххлористым углеродом (или хлороформом). Детали метода описаны Сенделом. [c.54]

    Каждой прописи анализа предшествует перечень нужных реактивов. Концентрация титрованных реактивов дается в единицах молярности или нормальности (см. табл. 10, стр. 100). К ним относятся растворы дитизона растворы, применяемые для титрования и приготовления шкалы сравнепия кислоты щелочи и т. д. Если концентрация приведена в процентах, то это можно понимать или как весовые проценты, или как содержание вещества в граммах в 100 мл раствора. Все приведенные концентрации надо рассматривать как примерные. Для растворов дитизона и титрованных растворов, кроме концентрации в микромолях мкМ), приводятся также практически наглядные величины в микрограммах на миллилитр мкг1мл), причем числа даются с точностью до третьего знака. Титрованные растворы применяют для установки титра раствора дитизона, для обратных титрований. Их можно использовать при освоении методик вместо испытуемых растворов . Основные величины модулей поглощения, необходимые при фотометрических определениях, приведены в табл. 13 (стр. 116). Различные способы фотометрирования приведены на стр. 119 и 122 н сл. [c.144]

    Для извлечения и определения ионов Т1+ л чше всего служит раствор дитизона в хлороформе. В результате работы в щелочном растворе (pH >11) избыточное количество дитизона почти количественно переходит в водную фазу к анализ сводится к определению пл методу одноцветной окраски (ср. раздел б, 1, а также раздел 6,2, стр. 325). Для колориметрического или фотометрического определения пользуются или малиновокрасным растворо.м TlHDz в хлороформе, или образующимся при разложении последнего кислотой сине-зеленым раствором дитизона в хлороформе, или, наконец, водным раствором, содержащим избыточное количество дитизона, окрашенным в желтый цвет, свойственный ионам HDz". [c.322]

    Существует лишь несколько чувствительных реагентов на кобальт. Одним из них, применяемым для анализа силикатных пород, является нитрозо-Н-соль. Ниже приведен метод, использующий этот реагент с последующей экстракцией дитизоном. К другим реагентам, предложенным для фотометрического определения кобальта в силикатах, относятся ЦДТА, 2-нитрозо-1-нафтол [13] и роданид с три-н-бутиламином [14].  [c.200]

    Для определения цинка в силикатных породах применялись методы экстракции с дитизоном [4], однако Кармайкл и МакДональд [5] показали, что эти методы имеют недостатки, связанные с мешающим действием других металлов, особенно меди, кобальта и никеля. Эти помехи приводят к завышенным результатам, и в некоторых анализах получаются величины, вдвое превышающие действительное содержание. Такой вывод совпадает с результатами работы Гринланда [6], который особенно указывает на никель как источник получения завышенных результатов при экстракции дитизоном с последующим фотометрическим определением с дитизоном. [c.446]

    Ниже кратко изложена методика анализа, разработанного в соответствии с этой схемой. Из раствора концентрата следов в 2 н. Н2804 выделяют Ag и TTg экстракцией в виде дитизонатов, после чего их разделяют путем реэкстраки,ии Ag разбавленной с()ляиой кислотой. Оба элемента определяют фотометрическим методом с применением дитизона. Затем из меиее кислой среды (pH 1) выделяют и определяют с помохцью дитизона [c.79]


Смотреть страницы где упоминается термин Дитизон в фотометрическом анализе: [c.55]    [c.55]    [c.39]    [c.200]    [c.100]    [c.233]    [c.233]    [c.13]    [c.36]    [c.407]    [c.302]   
Экстракция внутрикомплексных соединений (1968) -- [ c.183 ]




ПОИСК





Смотрите так же термины и статьи:

Дитизон

Фотометрический анализ



© 2025 chem21.info Реклама на сайте