Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сульфиты мышьяка

    Определению не мешают кальций, стронций, барий, магний, свинец, бериллий, марганец, никель, хром(III), алюминий, уран, висмут, лантан, мышьяк, сурьма, теллур, а также нитрат-, сульфат-, хлорид-, фторид-, бромид-, сульфит-, тиосульфат-, тетраборат-, оксалат-, цитрат- и тартрат-ионы. [c.164]

    Описанный метод применен для выделения мышьяка при его определении в рудах и продуктах из переработки [268, 269]. Для восстановления мышьяка(У) до мышьяка(1П) могут использоваться и другие восстановители, в том числе сульфит натрия, иодид калия, аскорбиновая кислота, хлорид олова(П) и др. [c.124]


    Роль мышьяковой кислоты заключается в связывании сульфита, образующегося при реакции аминирования. Сульфит восстанавливает и разлагает серебряную соль, снижая выход 2-аминоантрахинона. Для приготовления мышьяковой кислоты лучше всего в качестве исходного материала брать мышьяк, окисляя его хлоратом натрия (или калия) в присутствии небольшого количества соляной кислоты, действующей как катализатор . [c.449]

    Для фотоколориметрического определения германия были в первую очередь использованы цветные реакции образования германо молибденовой кислоты и ее восстановления до молибденовой сини [604]. И. П. Алимарин и Б. Н. Иванов-Эмин [605] колориметрировали непосредственно желтые растворы германомолибденовой кислоты. Этот метод позволяет определять германий при разбавлении 1 1 000 000. Чувствительность реакции повышается при восстановлении германомолибденовой кислоты. В качестве восстановителя рекомендуется соль Мора (сульфат Ре2+), но можно применять также гидрохинон, гидро-ксиламин, аскорбиновую кислоту, сульфит, станнит и другие восстановители. Мышьяк, фосфор и кремний мешают определению германия этим методом, занимая, как и германий, место [c.224]

    Вольфрам 304 обнаружение 311, 312 Восстановители алюминий 287, 291, 344 железо 291 магний 287, 291 олово 290, 291, 292, 293, 399 станниты натрия или калия 265 сульфит натрия 201, 320 хлорид олова 258, 259, 287 цинк 287, 291, 292, 306, 308, 344 этиловый спирт 201 Восстановление 183, 184, 230 железа 293 ванадия(У) 308 висмута 265, 293 вольфрама 311 молибдена 309 мышьяка 286, 287 нитрат-иона 344 олова 294 [c.416]

    Метод выделения меди сульфидом натрия обычно применяется для отделения от мышьяка, сурьмы и олова, образующих сульфо-соли. Осаждение проводят в щелочной среде в присутствии цитрата или тартрата натрия, препятствующих гидролизу ряда солей металлов. [c.226]

    Неорганические вещества кальций, магний, натрий, ртуть, мышьяк, азот, селен, кислород, а также сульфид-, сульфит-, сульфат-, тиосульфат-, пиросульфит-, карбонат- и хлорид-ионы, анионы хлорноватистой и хлорноватой кислот, двуокись хлора и серы, перекись водорода. [c.73]

    Минеральную часть сухих веществ сульфитного щелока составляют минеральные вещества, содержащиеся в гемицеллюлозах и в лигнине древесины, и вещества, присутствующие в варочной кислоте сернистая кислота, сульфит кальция, магния, аммония и натрия в зависимости от ее состава. Возможно присутствие мышьяка и селена. При оценке сульфитного щелока [c.25]


    В этих схемах полной стрелкой показано положение координационной связи. Фигурирующие здесь донорные элементы (сера, -мышьяк и азот), а также селен, фосфор и другие не образуют соединений, обладающих свойства.ми каталитических ядов, если они находятся в состоянии наивысшей валентности, поскольку в этом случае молекулы не обладают парами свободных электронов. То же справедливо для ионов этих элементов. Например, сульфит-ион является ядом, в то время как сульфат-ион им не является [c.50]

    Препятствующие анализу вещества. Большие количества хлоридов, связывающих сурьму в комплекс, мешают определению. Висмут, свинец, ртуть, серебро, а также большие количества олова и мышьяка, дающие нерастворимые осадки и растворимые окрашенные комплексы с иодидом, также мешают определению. Окислители, в том числе и трехвалентное железо, выделяющие иод, тоже препятствуют определению. Большие количества пиридина приводят к нейтрализации раствора и разрушают окрашенный комплекс. Сульфит в больших количествах мешает определению, так как образует с иодидом соединение, окрашенное в слабожелтый цвет. Концентрация иодида при определении должна составить около I % (в конечном объеме). Оптимальная кислотность соответствует 7 н. раствору серной кислоты. [c.219]

    Для определения фосфата можно также принять описанный нэ стр. 341 ход анализа, основанный на применении сульфата гидразина в качестве восстановителя при определении мышьяка. Для восстановления фосфоромолибдата до молибденовой сини иногда пользуются реактивом, содержащим аминонафтолсульфокислоту и сульфит. [c.268]

    Обычно при анализе черных металлов мышьяк предварительно отделяют, однако определение мышьяка в стали можно провести и бее предварительного отделения. Для этого ведут анализ двух одинаковых объемов раствора в один не добавляют сульфит, во второй добавляют. В первом случае образуется смесь фосфорномолибденовой и мышьяковомолибденовой сини, т. е. оптическая [c.145]

    Из анионов в сточных водах цветной металлургии наиболее часто встречаются следующие цианид-ионы, простые и комплексные (в соединении с медью и цинком), роданид-ионы, фторид-ионы, мышьяк (в виде НАзО ) и сульфит-ионы (Н5 и 5 = ). [c.276]

    Какие элементы подгруппы мышьяка в степени окисления +П1 обра-э ют тиосоля Напясать формулы этих тиосолей, их названия и уравнения реакций и их получения взаимодействием соответствующих хлоридов с избытком сульф ида аммония. [c.147]

    Содержание Аз, ЗЬ и В1 в земной коре невелико этр элементы встречаются преимущественно в виде сульфи дов РеАзЗ — арсенопирит, АзгЗз — аурипигмент, АзЗ — реальгар, ЗЬдЗз — антимонит, В123з — висмутин. В сво бодном состоянии мышьяк, сурьму и висмут получаю из сернистых руд прокаливанием на воздухе с последую щим восстановлением полученных оксидов углем  [c.334]

    Разделение посредстаом образования сульфо-анионов. Элементы группы мышьяка, в противоположность большинству элементов группы меди, образуют сульфо-анионы и растворяются поэтому в растворах сульфидов ж полисульфидов щелочных металлов. Из группы меди только ртуть, медь и висмут ведут себя отчасти аналогично элементам группы мь1шьяка. Сульфид ртути практически нерастворим в растворах сульфида аммония, мало растворим в растворах полисульфида аммония и растворим в смеси растворов сульфида натрия и едкого натра или едкого кали. Сульфид меди нерастворим в растворах сульфидов щелочных металлов, свободных от полисульфидов, но несколько растворим в присутствии последних. Сульфид висмута нерастворим в растворах сульфида и полисульфида аммония и в растворах бисульфидов калия и натрия (NaHS и КН8), но заметно растворим в растворах КзЗ и КазЗ, в смесях их с едкими щелочами и в растворах полисульфидов натрия и калия. [c.88]

    Применяют для лечения остры.х и хронических отравлений неорганическими и органическими соединениями мышьяка, ртутн, хрома, висмута и другими металлами (но не свинца), относящихся к так называемым тио-ловым ядам, т. е. веществам, способным вступать во взаимодействие с сульф-гидрнльными (тиоловыми) группами ферментных белков. [c.194]

    Чистогу препарата определяют по бесиветности и прозрачности раствора, рН=4—5 (определяемому потенциометрически), отсутствию хлоридов, предельному содержанию сульфи га натрия (не более 0,5 мл 0,01 н. раствора йода на 40 мл 0,59i>-ного раствора), влаги (не более 2% при высушивании до постоянного веса ири 100—105 ), тяжелых металлов, мышьяка. [c.266]

    Окисление. Окислительные свойства перекиси водорода основаны на сравнительно легком отщеплении одпого из атомов кислорода, Если, например, на сульфит или сернистую кислоту подействовать перекисью, то происходит быстрое окисление их до сульфата или серной кислоты. При действии на сернистый свинец также образуется сульфат, при действии же на сернистый мыщьяк наряду с мышьяков )й кислотой образуется и серная. Фосфористая и мышьяковистая кислоты очень быстро окисляются до фосфорной и мышьяковой. Очень легко происходит окисление комплексных цианистых солей железа или кобальта [c.65]


    Сульфид бария 138 бора 152 висмута 405 галлия 183 германия 244—5 железа 836 индия 190 иттрия 617 кадмия 593 калия 60 кальция 118 кобальта 854 кремния 234 лантана 624 лития 19 марганца 800 меди 561—2 молибдена 778 мышьяка 369—71 натрия 39 никеля 868 олова 254—5 ртути 602 рубидия 74 свинца 269 серебра 571 скандия 610 стронция 128 сурьмы 384—5 таллия 201 углерода 208 фосфора 354—5 хрома 768 цезия 86 цинка 586 Сульфид, гидроаммония 286 бария 139 натрия 40 Сульфид, ди- 837 Сульфид, поли-аммония 287 калия 61 натрия 41 цезия 87 Сульфит 416, 418, 420 Сульфит, гидро- 417, 419, 421 [c.478]

    Фенолы и полиоксипроизводные, иапример пирокатехин н гидрохинон, пирогаллол, нафтолы, ок азываются для многих реакций окисления хорошими антиокислителями, такими же являются нод, неорганические галоидные солн (преимущественно нодистые и менее бромистые), гидронодиды органических оснований, иоднстые алкилы, нодистые четырехзамещенные аммонии, йодоформ, четырехноди-стый углерод, сера, полуторасернистый фосфор Р Зз, неорганические сульфиды, амины, нитрилы, амиды, карбамиды, уретаны, некоторые красители, неорганические соединения фосфора, мышьяк, сурьма, висмут, ванадий, бор, кремний, олово, свв-нец. В качестве самоокисляющихся веществ были иснытаны ненасыщенные углеводороды, сложные органические соединения (каучук, жиры), сульфит натрня, различные классы альдегидов и т. п. [c.475]

    При непрямом определении хрома (III) [1], мышьяка (III) [13], солей аммония [13], сульфит-,тиосульфат-и сульфид-иопов [13] (и серы в сталях) к анализируемому раствору прибавляют в избытке раствор гипобромита и неизрасходованный гинобромит оттитровывают раствором Н2О2. [c.166]

    Манганат. Было изучено применение в качестве титранта сравнительно устойчивых растворов манганата калия [1]. Растворы К2МПО4 применяют для определения мышьяка (III) [2, 3], сурьмы (III) [4], хрома (III) [5], теллура (IV) [2, 6], таллия (I) [7], перекиси водорода [8], марганца (II) [8], цианид-, роданид-, тиосульфат-, сульфит-и сульфид-ионов [9], муравьиной [10], молочной [9], винной[ 9, И], фумаровой [9, И], малеиновой [9, 11], яблочной [9, И], лимонной [11], гликолевой [9], пировиноградной [9] кислот, спиртов [2], формальдегида [9 , сахаров [9]. [c.282]

    III) [19], мышьяка (III) [18—20], гидразина [19], родапид-ионов [19], сульфит-ионов [18, 21], анилина [22], метиланилина [22], этиланилина [22], аскорбиновой кислоты [23], 8-оксихинолина [24], гидразида изоникотиновой кислоты [25], альдрина [25, 26]. [c.282]

    Никель осаждается количественно из аммиачных растворов, неполностью — из слабокислых растворов и совсем не осаждается из сильнокислых растворов. (Следовательно, для количественного отделения меди от никеля необходимо лишь поддерживать достаточно высокую концентрацию кислоты.) Серьезное мешаюшее влияние при определении никеля оказывают серебро, медь, мышьяк и цинк, которые, однако, можно удалить осаждением сероводородом. Присутствие железа (II) и хрома-тов нежелательно з , они могут быть удалены осаждением в виде гидроокисей. В присутствии кобальта осаждаются оба элемента, но для количественного осаждения кобальта необходимо добавить сульфит, препятствующий образованию аминов кобальта (III). Добавление сульфита, однако, приводит к загрязнению выделившихся металлов серой. Поэтому поступают следующим образом выделившийся осадок растворяют, никель определяют по реакции с диметилглиоксимом, серу — путем осаждения ее в виде сульфата бария, а содержание кобальта находят по разности. [c.349]

    Выбор сульфида щелочного металла зависит от того, какое надо провести разделение. Например, нужно взять сульфид аммония или бисульфид щелочного металла (NaHS или KHS), если висмут должен остаться вместе с группой меди сульфид натрия или сульфид калия вместе с соответствующей едкой щелочью, когда нужно, чтобы ртуть осталась с группой мышьяка. Сульфид натрия следует также предпочесть, когда в осадке должен остаться сульфид меди, тогда как сульфид калия более желателен для отделения сурьмы. (Описание метода см. Осаждение посредством образования сульфо-анионЬв , стр. 88.) [c.93]

    Все полимерные минеральные соединения он разделил на три большие группы. Первая включает в себя твердые вещества с ионными связями. Звенья этих соединений образованы в результате ассоциации простых ионов или веществ с противоположной полярностью. Вторая группа состоит из металлов, внут-риметаллических и полуметаллических соединений. Третья группа содержит вещества с устойчивым скелетом, образованным из ковалентно—соединенных атомов. Эта последняя группа веществ подробно рассмотрена автором, причем особенно детально обсуждены элементарная сера и ее соединения с другими элементами — водородом, азотом и кислородом. Все рассмотренные соединения (элементарная сера, сульфаны и их замещенные, азотсодержащие циклические соединения серы и другие) обладают скелетом, построенным из устойчивых цепей, образованных ковалентно—соединенными атомами. Аналогичным образом построено значительное число соединений и других элементов фосфора, мышьяка, сурьмы, кремния, германия, бора, алюминия и некоторых других. Подчеркивается, что все рассмотренные соединения отличаются устойчивостью, определяемой ковалентным соединением цепей атомов. Показано также, что одновалентные элементы объединяются в цепь в виде исключения, ро донорно—акцепторному механизму, как это имеет место среди галогенидов металлов. Двухвалентные элементы уже образуют цепи, гомогенные или смешанные. Кроме того, они играют роль мостов в двух- и трехмерных образованиях. [c.401]

    Катодные ингибиторы влияют на скорость катодной реакции коррозионного процесса. К ним относятся активные восстановители, связывающие кислород и уменьшающие его содержание в растворе (например, сульфит натрия или гидразин), защищающее вещества, уменьшающие поверхность катода за счет образования Пленок труднорастворимых соединений (например, Са(НСОз)2 или 2п504), а также вещества, повышающие перенапряжение катодной реакции (катионы тяжелых металлов, например висмута и мышьяка). [c.54]

    При отравлениях, возникающих в производственных условиях, в настоящее время применяются с большим эффектом унитиол (2,3-димеркаптопропансульфонат натрия), 2,3-дитио-глицерин (БАЛ) и другие соединения, содержащие две сульф-гидрильные группы, которые связывают соединения мышьяка. Во время работы пользуются индивидуальными защитными приспособлениями — респираторами, защитными очками, плотной, наглухо закрывающейся одеждой, нательным бельем и резиновыми перчатками. [c.327]

    Так же, как и при электролизе цинка, первой стадией очистки марганцевого электролита является гидролитическая очистка. Раствор после выщелачивания нейтрализуют аммиаком или избытком огарка до рП = 6,5. При этом сульфаты железа, и алюминия, присутствующие в растворе, гидролизуются и дают осадок гидроокисей. Одновременно частично удаляются из раствора за счет адсорбции или образования основных солей ионы мышьяка и молибдена. Гидролиз соли марганца происходит при более высоком значении pH (>8,5), вследствие чего марганец в осадок не выпадает. После гидролиза электролит очищают от меди, никеля, кобальта и других тяжелых металлов. Для этого раствор обрабатывают газообразным сероводородом или сульфидом аммония. В осадок выделяются сульфиды этих металлов. Осадок отфильтровывают. В фильтрате содержится некоторое количество коллоидальной серы и сульфи-. дов. Чтобы избавиться от этих примесей, в электролит добавляют железный купорос Ре304 до содержания в растворе 0,1 г/л железа. При pH = 6,5—7,0 железо окисляется кислородом воздуха и выпадает в виде гидроокиси, адсорбируя коллоиды при этом удаляются также остатки мышьяка и молибдена. [c.103]

    Медные концентраты предложено растворять в смеси бромоводородной кислоты и брома [5.1875], халькопирит (медный колчедан) — в смеси 1 ч концентрированных азотной и 3 ч хлороводородной кислот с бромом [5.1876], сульфо-шпинелн — в смеси брома с азотной кислотой или со смесью (1 3) азотной и хлороводородной кислот [5.1877], а сульфидные никелевые руды [5.1878] илиЗпЗз [5.1879] в смеси брома с четыреххлористым углеродом. Пириты при определении серы окисляют смесью четыреххлористого углерода и брома (3 2) с последующей обработкой раствора азотной кислотой [5.1880]. Преимуществом этих методов бромирования является возможность дистилляции бромидов мышьяка, сурьмы, селена и других элементов из раствора [5.1881 ]. [c.265]

    При нагревании концентрированной соляной кислоты с сульфи дами сурьмы последние растворяются (в отличие от сульфидов мышьяка) с образованием хлорокомнлексов и выделением НгЗ  [c.331]

    Исследование условий сушки арсеиита натрия праводилаи на сушилке лабораторного типа с полезной поверхностью 0,5 м . Растворы арсенита натрия были получены л,ря взаим0действ1ии технического белого мышьяка с каустической содой технического белого мышьяка с кальцинированной содой и технического белого мышьяка с каустической содой с добавкой сульф та натрия. [c.111]


Смотреть страницы где упоминается термин Сульфиты мышьяка: [c.514]    [c.94]    [c.655]    [c.176]    [c.58]    [c.275]    [c.377]    [c.534]    [c.378]    [c.115]    [c.103]    [c.146]    [c.50]    [c.187]    [c.7]    [c.457]   
Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8 (1966) -- [ c.612 ]




ПОИСК





Смотрите так же термины и статьи:

Сульф

Сульфаны

Сульфиты

иод сульфо



© 2024 chem21.info Реклама на сайте