Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ассоциация с простейшими

    Кондуктометрические измерения также находят широкое применение для определения константы ассоциации простых электролитов, комплексных ионов, слабых кислот и оснований во многих растворителях и их смесях. Измерения электропроводности использовались для получения и более качественной информации, например определения суммарного заряда неорганических комплексов. [c.61]


    В итоге в любых растворах нефтяных ВМС, в том числе в самих нефтях и нефтяных остатках, формируются сложнейшие системы, находящиеся в состоянии лабильного динамического равновесия и содержащие молекулярно диспергированные соединения, продукты их попарной ассоциации (простейшие комплексы и соли) и полимолекулярные части- [c.265]

    Все же соединения кремния — важная, даже необходимая, составляющая в жизненных процессах. Как указывает Гамов [1], переход от мертвой к живой материи может быть весьма постепенным. Согласно постулату Опарина [2], жизнь зародилась путем ассоциации простых соединений углерода, встречающихся в природе, с неорганическими коллоидами. [c.261]

    Отметим, что величина в квадратных скобках есть константа равновесия Кц для реакции + В - А-При интегрировании по частям интеграл Q b) сводится к известным табличным интегралам, и значение его при разных величинах Ь может быть найдено в таблице, так что Кц оказывается зависящей от весьма просто определяемых на опыте параметров. Степень ассоциации а = или [c.453]

    Отклонения от простейших свойств обусловливает, например, полярность молекул. В растворах полярных молекул происходят явления ассоциации и сольватации, в результате которых свойства раствора становятся более сложными. Отклонения свойств раствора от простейших вызываются также химическим взаимодействием компонентов раствора. Оно обычно сопровождается выделением теплоты и уменьшением вероятности перехода в газовую фазу молекул компонента, частично связанных в более сложные соединения. [c.168]

    Ассоциация молекул в водной фазе вызывает уменьшение коэффициента распределения при увеличении концентрации металла, ассоциация же в органической фазе—увеличение этого коэффициента. Комплексы металла, имеющего хорошо ассоциирующие частицы, отличаются очень слабой растворимостью в воде, большой—в неполярных растворителях (бензол, четыреххлористый углерод, хлороформ и метилизобутилкетон) и слабой в полярных (спирты, эфиры). Металлы со слабо ассоциированными молекулами особенно хорошо экстрагируются кетонами, простыми и сложными эфирами и другими растворителями типа доноров при добавлении кислот. В таких системах коэффициент распределения увеличивается с повышением количества свободной кислоты, а в некоторых системах имеет максимум при известных ее концентрациях, так как при низких концентрациях из частиц кислоты и экстрагируемого вещества образуется мало комплексов, а при высоких концентрациях количество комплексов сильно увеличивается. Нов некоторых системах при определенной кислотности одновременно начинает расти взаимная растворимость фаз, что может ухудшить коэффициент распределения. [c.425]


    Количественный групповой анализ ГАС ряда типов (сульфидов, тиофенов, простых эфиров, фуранов, пиридинов) затруднен из-за отсутствия в их спектрах полос, пригодных для использования в качестве аналитических. При изучении тяжелых фракций нефтей и битумов методами ИК спектроскопии возникают дополнительные трудности в связи с теж, что некоторые типы функциональных групп (фенольные, карбонильные, сульфоксидные), присутствуя в составе высокомолекулярных, соединений нефти, поглощают при меньших частотах, чем в составе чистых модельных соединений. Этот эффект связывают с более интенсивными меж-молекулярными взаимодействиями и ассоциацией молекул ВМС, содержащих повышенное количество этих функциональных групп [129, 131, 230]. [c.29]

    Стехиометрические отношения в формулах соединений должны выражаться простыми целыми числами. Молекулярные формулы используются только тогда, когда речь идет о молекулах вещества, степень ассоциации которых принимается не зависящей от температуры. Если же степень ассоциации зависит от температуры, то в общем случае следует пользоваться [c.26]

    В двадцатых годах на основе учения о полярной структуре молекул были разработаны простейшие представления об ассоциации молекул в жидкой воде как результате взаимодействия диполей. Однако эти представления оказались недостаточными для построения теории, согласующейся с опытными данными. В тридцатых годах на основе использования данных рентгеновского анализа Бернал и Фаулер показали, что в жидкой воде молекулы расположены в той или другой степени упорядоченно. При обычных и повышенных температурах это расположение близко к структуре кварца. При более низких температурах (ниже 4° С) вода имеет менее плотную структуру, подобную структуре обычного льда (или тридимита — одной из высокотемпературных кристаллических модификаций кремнезема). [c.165]

    Обратимся теперь к вопросу о причинах этих отклонений. Наиболее важными факторами в этом отношении являются обычно процессы, связанные с изменением средней величины частиц жидкости. Сюда относится как уменьшение величины частиц вследствие частичной или полной диссоциации тех ассоциированных комплексов, которые могли быть в одном из компонентов в чистом состоянии, так и укрупнение частиц вследствие образования соединений между молекулами компонентов. Уменьшение ассоциации вызывает поглощение теплоты при образовании раствора, облегчает испарение молекул и приводит к положительным отклонениям давления пара. Образование же соединений вызывает противоположные эффекты. Нередко уменьшение ассоциации и образование соединений происходят одновременно, когда один или оба компонента раствора ассоциированы в чистом состоянии и при образовании раствора наряду с изменением средней величины комплексов, состоящих из молекул одного вида, возникают комплексы из молекул различных видов, часто обладающие переменным составом и не отвечающие каким-нибудь простым стехиометрическим соотношениям. [c.311]

    Можно принять, что молекулы реагента в области, близкой к поверхности катализатора, изменяются, возбуждаются или взаимодействуют с образованием промежуточных соединений. Были предложены различные теории для объяснения каталитической активности. Согласно одной теории, промежуточное вещество рассматривается как ассоциация молекулы реагента с частью поверхности катализатора. Иными словами, молекулы каким-то образом присоединяются к поверхности. По другой теории молекулы попадают в область, примыкающую к поверхности катализатора,и находятся под влиянием поверхностных сил, т. е. молекулы все еще подвижны, но, тем не менее, изменились под воздействием указанных сил. В соответствии с третьей теорией на поверхности катализатора образуется активный комплекс, или свободный радикал. Этот радикал переходит с поверхности в главный газовый поток, возбуждая цепь реакций с исходными молекулами прежде, чем он распадается. В противоположность двум первым теориям, согласно которым реакция протекает вблизи поверхности, по данной теории поверхность катализатора просто является источником или возбудителем свободных радикалов, а реакция происходит в основной массе газа вдали от поверхности. [c.410]

    Все рабочие места должны быть обеспечены хотя бк самыми простыми средствами на случай чрезвычайной ситуации, например табличками с номером телефона медпункта. Объем и детальность плана ликвидации аварии определяются размерами установки и степенью опасности, которую она несет. Как отмечалось выше, на практике сами предприятия внедряли у себя определенные правила действия, опережая тем самым появление государственных законов. Например, английская неправительственная Ассоциация химической промышленности в 1976 г. выпустила сборник рекомендаций по разработке плана ликвидации аварии [С1А,1976]. В странах ЕЭС наличие на предприятиях таких планов обязательно. [c.525]


    Константы ассоциации, определенные для некоторых компонентов, приведены в Приложении. Для других компонентов их можно определить по экспериментальным значениям второго вириального коэффициента или путем интерполирования свойств некоторых классов соединений, таких, как спирты, сложные и простые эфиры. Неточность подобной оценки не приводит к значительным ошибкам в расчете парожидкостного равновесия. [c.75]

    Свойства. Простые эфиры представляют собой вещества с приятным ( эфирным ) запахом, очень плохо растворимые в воде, но легко растворимые в органических растворителях. Низшие члены ряда весьма летучи их температуры кипения всегда значительно ниже, чем те.мпе-ратуры кипения спиртов с тем же числом углеродных атомов (табл. П). Это интересное явление объясняется тем, что спирты, подобно воде, сильно ассоциированы вследствие наличия гидроксильной группы. В то же время эфиры находятся в мономолекулярном состоянии, так как в них отсутствует гидроксил, обусловливающий ассоциацию воды и спиртов. [c.150]

    В простейшем случае (при отсутствии диссоциации и ассоциации молекул растворенного вещества) коэффициент распределения т есть приблизительно величина постоянная. При этом он является функцией температуры и мало зависит от концентрации х соответственно изотерма экстракции близка к прямой. [c.523]

    В разное время, на разных стадиях технологического процесса человек обобщает, анализирует поступающую информацию, синтезирует разрозненные факты, идеи, явления. Это позволяет ему делать выводы о свойствах и состоянии объекта, исследовать новые аспекты, лежащие за пределами ощущения и восприятия, распространять полученные результаты на другие подобные случаи, прогнозировать развитие, поведение и состояние систем. Такое сложное обобщение, глубокий анализ и прогноз делаются на основе познавательного психологического процесса, который называется мышлением. Мышление — это сложная, мыслительная деятельность, состоящая из простых мыслительных актов (ассоциаций, суждений, умозаключений), в результате которой формируются совершенно новая информация, знание, умение, навыки [14]. Смысл объектов для человеческого мышления определяется их предметным содержанием и той психологической ситуацией, в которой развертываются действия человека, его намерениями и мотивами, отношением к задачам. Вот почему, поставив перед человеком соответствующую цель, можно намного повысить его отдачу [42]. [c.72]

    В работах [75, 76] оценивалась степень ассоциации молекул простых и сложных жидких систем по их вязкости. Сделано предположение, что наименьшими структурными единицами, участвующими в процессе массопереноса и передачи импульса являются не молекулы, а их комплексы, что проявляется, очевидно, при условии превышения энергии связи между молекулами, входящими в состав комплексов, над энергией теплового движения. В этом случае формулы для расчета вязкости остаются неизменными, а смысл входящего в них молярного объема будет определять объем комплексов. Кроме этого дополнительно принимается еще одно предположение — форма комплексов близка к сфере. Подобные рассуждения были положены нами в дальнейшем для описания нефтяных дисперсных систем при изучении их методом ротационной вискозиметрии. Указанные исследования получили развитие и были взяты за основу при создании метода оценки степени ассоциации молекул в нефтяных системах [77]. Изучались реальные нефтяные системы. Степень ассоциации рассчитывалась на основе значения энергии активации вязкого течения. Показано, что в диапазоне температур 20-50°С усть-балыкская нефть, например, является сильно ассоциированной жидкостью. При повышении температуры степень ассоциации монотонно снижается, а энергия вязкого течения стремится к постоянству. Предполагается, что подобное поведение системы обусловлено не распадом существующих агрегатов, а отделению от агрегатов периферийных молекул, тепловая энергия ко- [c.85]

    Наиболее простым закономерностям подчиняются идеальные растворы, образуемые веществами, сходными по химическому составу и физическим свойствам. Отклонения от идеальности вызываются химическими (ассоциация, диссоциация, сольватация и т. п.) и физическими (влияние различия молекулярных объемов и сил взаимодействия молекул) эффектами, Отклонения от идеальности, обусловленные различием химических свойств, как правило, уменьшаются с ростом температуры, а отклонения, вызванные неодинаковыми молекулярными размерами, возрастают. Введенное понятие идеальных растворов имеет не только теоретическое, но и практическое значение. Свойствами идеального раствора ие обладает ни один реальный раствор, за исключением растворов оптически активных и.зомеров и смесей, состоящих из компонентов, различающихся по изотопному составу, однако очень многие растворы практически ведут себя, как идеальные растворы. [c.180]

    Константы ассоциации простых алкиламмониевых солей с 18-краун-б-эфи-ром в СВС1з при 25°С равны 10 л/моль, что соответствует свободной энергии процесса комплексообразования —33,5 кДж/моль (—8 ккал/моль). [c.267]

    Однако было выдвинуто предположение, что первоначально соединения кремния играли важную и, по всей вероятности, необходимую роль в происхождении жизни. Гамов [5] отмечал, что переход от неживой материи мог протекать очень постепенно. Опарин [6] выдвинул постулат, согласно которому жизнь возникла посредством ассоциации простых, встречающихся в природе углеродных соединений с неорганическими веществами в коллоидной форме. Бернал [7] предположил, что коллоидные силикаты, вероятно, играли каталитическую роль в процессах формирования сложных органических молеку/ из простых молекул. Он допускал также, что первоначальная атмосфера Земли (до возникновения жизни) должна была состоять нз таких водородных соединений, как метан, аммиак, сероводород и водяные пары. Как показал Миллер [8], аминокислоты могут образовываться из метана, азота и водяного пара под влиянием электрических разрядов, поэтому могли существовать разнообразные органические соединения. Бернал высказал предположение, что обогащение простых органических молекул могло происходить при их адсорбции на коллоидных глинистых минералах, имеющих очень больщое значение удельной поверхностн и сродство по отношению к органическим веществам. Он указал, что небольшие по размеру молекулы, присоединенные к поверхности глины, способны удерживаться на ней не беспорядочно, а в определенных положениях как по отношению к поверхности глины, так и друг к другу. Таким образом, вследствие упорядоченного расположения эти молекулы могут взаимодействовать между собой с образованием более сложных соединений, особенно в том случае, когда осуществляется подвод энергии за счет падающего на поверхность света. Согласно Берналу, вначале могло происходить формирование асимметричных молекул, которые характерны для живых организмов. Это могло осуществляться путем более предпочтительной попарной адсорбции асимметричных молекул на поверхности кварца, так как кварц — единственный общеизвестный минерал, обладающий асимметричной структурой. [c.1006]

    При возрастании концентрации раствора полимера вязкость изменяется на много порядков и в случае сравнительно небольшого содерлония растворителя начинает приближаться к вязкости самого полимера ( 10 П). Большую роль играет природа растворителя, которая проявляется тем сильнее, чем жестче цепь макромолекулы и чем ближе температура опыта к 7 от раствора. С увеличением доли полимера в системе быстро сокращается среднее расстояние между макромолекулами, в связи с чем увеличивается вероятность взаимного столкновения их при хаотическом движении, образования при ассоциации простейших надмолекулярных структур и возникновения молекулярных сеток. Так появляются структурированные, упруговязкие системы, в которых молекулы связаны мел<ду собой в отличие от бесструктурных, у ко- [c.500]

    Все полимерные минеральные соединения он разделил на три большие группы. Первая включает в себя твердые вещества с ионными связями. Звенья этих соединений образованы в результате ассоциации простых ионов или веществ с противоположной полярностью. Вторая группа состоит из металлов, внут-риметаллических и полуметаллических соединений. Третья группа содержит вещества с устойчивым скелетом, образованным из ковалентно—соединенных атомов. Эта последняя группа веществ подробно рассмотрена автором, причем особенно детально обсуждены элементарная сера и ее соединения с другими элементами — водородом, азотом и кислородом. Все рассмотренные соединения (элементарная сера, сульфаны и их замещенные, азотсодержащие циклические соединения серы и другие) обладают скелетом, построенным из устойчивых цепей, образованных ковалентно—соединенными атомами. Аналогичным образом построено значительное число соединений и других элементов фосфора, мышьяка, сурьмы, кремния, германия, бора, алюминия и некоторых других. Подчеркивается, что все рассмотренные соединения отличаются устойчивостью, определяемой ковалентным соединением цепей атомов. Показано также, что одновалентные элементы объединяются в цепь в виде исключения, ро донорно—акцепторному механизму, как это имеет место среди галогенидов металлов. Двухвалентные элементы уже образуют цепи, гомогенные или смешанные. Кроме того, они играют роль мостов в двух- и трехмерных образованиях. [c.401]

    В результате процессов ассоциации и последующей диссоциации в растворе появляются новые частицы, а концентрация простых молекул и ионов изменяется, что неизбежно приводит к изменению сил взаимодействия, а следовательно, и коэффициентов яктнвности. [c.96]

    Из этого рассмотрения следует общий вывод о том, что реакция будет ускоряться в растворителях, которые способствуют ассоциации реагентов. Величина, которую следует ожидать для такого рода аффектов, может быть определена для неионных реакций с использованием простой модели раствора. Если принять, что А, В,. .. и X образуют идеальный раствор с растворителем 3, который подчиняется закону Рауля во всем диапазоне составов, то можно написать соотношение между мольной долей Ж г-го компонента смеси и его равновесным давлением пара над раствором р1 = Х1ри где р — давление пара чистого -го вещества при температуре Т. Переходя к концентрациям, имеем для идеальных газов р1 = С рЕТ, в то время как для разбавленных растворов Ж где Уд — молярный объем растворителя, а Сз = 1/Уз — его копцептрация (С относится к раствору, Сга — к газу). [c.432]

    I В ряду Н1—НВг—НС1 температуры кипепия и плавления изменяются весьма закономерно (табл. 24), тогда как при переходе к НР оии резко возрастают Как уже говорилось в 47, это обусловлено ассоциацией молекул фтороводорода в результате возиик-иовения между ними водородных связей. Как показывает определение плотности пара, вблизи температуры кипения газообразный (Ьтороводород состоит из агрегатов, имеющих средний состав (НР) . При дальнейшем нагревании эти агрегаты постепенно распадаются, причем лишь около 90 °С газообразный НР состоит из простых молекул. [c.361]

    Отклонения от закона распределения наблюдаются при изменении состояния растворенных молекул в од1ЮЙ из фаз системы. Такими изменениями могут быть, например, диссоциация или ассоциация растворенного вещества. При этом устанавливается сложное равновесие между простыми и ассоциированными молекулами или ионами в пределах каждой фазы, а также между частицами, одинаковыми для всех фаз системы и распределенными между ними в данном соотношении. [c.212]

    Водородная связь. Давно было замечено, что простейшие соединения водорода с легкими сильно электроотрицательными элементами, например фтором или кислородом, отличаются от аналогичных соединений с тяжелыми элементами ненормально высокими температурами кипения и плавления. Это объясняли способностью молекул соответствующих водородных соединений (например, фтороводорода, воды, аммиака) образовывать ассоциаты — димеры, тримеры и более сложные полимеры. Такая ассоциация молекул осунгествляется посредством возникновения так называемой водородной связи. [c.64]

    Температурная зависимость В становится понятной на основе простой физической картины. При низких температурах столкновение двух молекул в значительной степени определяется даль-нодействующими межмолекулярными силами притяжения и такие пары могут проводить значительное время в окрестности друг друга. По существу это не что иное, как форма молекулярной ассоциации, и существование таких короткоживущих димеров снижает давление ниже давления идеального газа, что соответствует отрицательному значению В. При высоких температурах столкновения молекул происходят гораздо энергичнее и лишь незначительно зависят от слабых сил притяжения. Вместо этого преобладают короткодействующие силы отталкивания. В свою очередь это приводит к тому, что начинает сказываться собственный объем молекул, и давление становится выше давления идеального газа, что соответствует положительному В. При еще более высоких температурах В уменьшается снова в связи с тем, что при сильных взаимодействиях между молекулами оболочки последних деформируются и собственный объем молекул уменьшается. Таким образом, отрицательная ветвь второго вириального коэффициента соответствует силам притяжения, а положительная — силам отталкивания. Точка пересечения (температура Бойля) соответствует значению кТ, примерно в 3—5 раз превышающему средний максимум энергии притяжения между парой молекул. Обобщение этой простой [c.20]

    О последнем преимуществе квазихимического метода следует сделать несколько замечаний. Хотя газ, состоящий из атомов водорода, в обычных условиях можно описать непосредственно вириальным уравнением состояния, гораздо проще признать образование молекул. Если этого не сделать с самого начала решения задачи, то предварительно придется решать задачу молекулярной структуры, а затем механико-статистическую задачу. Это плохая стратегия, ибо она приводит к решению простой задачи через решение сложной задачи. В качестве примера рассмотрим предельный случай — уравнение состояния смеси N протонов и N электронов в обычных условиях. Это очень трудоемкая механико-статистическая задача, и может показаться, что вириальные коэффициенты будут расходиться из-за дальнодейст-вующих кулоповских сил. Однако если с самого начала использовать некоторые физические данные и принять, что электроны и протоны даже при достаточно высоких температурах образуют бинарные группы (атомы Н), а при более низких температурах—более сложные группы (молекулы Нг), то задача становится более простой и определенной. Невозможность принять точку зрения химической ассоциации должна привести к решению сложных проблем атомной и молекулярной структуры перед решением гораздо более легкой проблемы — уравнения состояния разреженного газа. Правда, эту задачу можно решить начиная с электронов и протонов и вывести соответствующие формальные выражения [77], однако для обычного атомарного или молекулярного газа это был бы слишком далекий обходной путь. [c.67]

    Небольшая часть серной кислоты, поступающей на установку, расходуется таким же образом. Вначале серная кислота не подвергается химическим превращениям, а просто разбавляется. Обычно свежая серная кислота имеет титруемую кислотность 98,0—99,5% Н2804. Постепенно она разбавляется водой, полимерами и эфирами, а когда ее концентрация снизится до 90%, ее откачивают с установки. Хотя реакции алкилирования могут протекать и при более низкой концентрации НгЗО , коррозионная активность катализатора в отношении углеродистой стали резко возрастает. На одном из собраний Национальной ассоциации нефтепереработчиков приводили данные [2] лабораторных исследований, когда концентрация кислоты была 82% и она была разбавлена (в меньшей степени водой, а в большей — полимерами). Некоторое количество воды необходимо, но не более нескольких процентов. Это подтверждает данные, полученные ранее [3]. Экономические расчеты позволяют дать окончательный ответ при определении оптимальной концентрации откачиваемой кислоты для данной установки. Более подробно это обсуждается ниже. [c.250]

    Уравнение Дебая применяется только для газов и простых жидкостей. Уссвершенствовапная модель Кирквуда [471 дает представление о дипольной молекуле и о ближайшем к ней слое соседних молекул как о структурной единице, статистические данные о которой известны из рентгеновских исследовании. Эта модель находится в хорошем соответствии с данными эксперимента. Она основана на представлении о том, что дипольные моменты локализованы в группах молекул. Последние имеют тенденцию к потере своей способности к ориентационным перемещениям в конденсированных системах в результате ассоциации и пространственных затруднений. УргЕнение Кирквуда имеет вид  [c.44]

    Алкилсульфиды представляют собой нерастворимые в воде л< идко-сти и в совершенно чистом состоянии не обладают неприятным запахом. Они кипят при более высокой те.мпературе, чем соответствующие меркаптаны. Этот факт интересен потому, что простые эфиры, содержащие кислород, в общем значительно более летучи, чем соответствующие им спирты. Явление это, как мы уже указывали раньше, связано с тем, что спирты ассоциированы, а простые эфиры не ассоциированы. В ряду сернистых соединений не наблюдается значительной ассоциации ии у меркаптанов, ни у тиоэфиров поэтому между их температурами кипения существует нормальное соотношение более высокомолекулярные тиоэфиры менее летучи, чем соответствующие простые эфиры. [c.155]

    Карбоновые кислоты сильно ассоциированы и даже при температурах, выше их температуры кипеция, показывают вдвое больший молекулярный вес, чем это следует из их простой молекулярной формулы. Эта ассоциация обусловлена, как и у воды и спиртов, наличием ОН-группы, водородный атом которой вступает в связь с атомом кислорода другой молекулы кислоты ( водородные мостики , водородная связь, стр. 114). [c.243]

    Для ТОГО чтобы оценить значение Д Од с соц. рассмотрим по отдельности каждый из членов правой части уравнения (1.2). Для оценки А сближ примем, что эта величина определяется в первом приближении потерями энтропии связываемой молекулы . В этом случае энтропию сближения (Д5сближ) просто оценить для комплексообразования с белком жесткой сферической молекулы [33]. При некоторых допущениях о стерическом факторе (ограничивающем площадь соприкосновения частиц и их вращательное движение) можно прийти к значениям — 7А5сближ 3—5 ккал/моль (12,6—21 кДж/моль) [33] (здесь и далее в этом параграфе примем значение Т, близкое к комнатной температуре). Если же связывание сопровождают существенные потери также и внутренних вращательных степеней свободы, ассоциация может стать по энтропий еще менее выгодной. Так, оценка энтропии ассоциации с белком линейного дианиона [c.25]

    На более ранних этапах формирования взглядов на природу ферментативного катализа слол<илась более простая статистическая модель [39, 40], в которой реагирующие группы принимают ту или иную ориентацию в пространстве, независимую друг от друга. Взаимодействие этих групп предполагает их сближение в ассоциат типа АВ (см. схему на стр. 51) с константой ассоциации 1/55 причем дальнейшее химическое взаимодействие возможно только при контакте молекул определенными участками поверхности, занимающими небольшую долю их общей поверхности. Вероятность такой благоприятной ориентации двух молекул небольшого размера оценивается в 10 —10 и, следовательно, правильная ориентация групп в исходном состоянии вутримолекулярной реакции может обеспечить ускорение в 10 —10 раз [32, 37, 40, 41]. Как видно, эта модель предсказывает меньшие эффекты ускорения (в сумме не более чем 55 X 10 раз) по сравнению с (2.30). Однако это обстоятельство вызвано лишь тем, что разные авторы принимают разные предельные значения для оценки необходимой степени сближения и, соответственно, ориентации реагирующих молекул (см. также [21]). [c.55]

    Коллигативные свойства можно использовать для определения молекулярной массы вещества. Например, если, зная массу т растворенного вещества, определить температуру замерзания (кипения) раствора, то. найдя понижение, повышение) температуры замерзания (кипения) раствора, можно вычислить число молей п раств оренного вещества, а затем и саму молекулярную массу вещества М = т1п. Таким образом можно определить степень диссоциации или ассоциации вещества в растворе. В этом случае следует умножить правую часть уравнений (355) и (356) на введенный Вант-Гоффом в соответствии с уравнением (322) коэффициент . Понижение температуры замерзания раствора повареной соли примерно в два раза больше, чем для раствора сахарозы той же моляльной концентрации. На практике чаще используют криоскопический метод, так как он более прост в экспериментальном исполнении, а кроме того, как правило, криоскопическая константа для одного и того же растворителя больше, чем эбулиоскопическая. Для растворителя камфары, например, =40 К-кг/моль. [c.281]


Смотреть страницы где упоминается термин Ассоциация с простейшими: [c.203]    [c.180]    [c.538]    [c.96]    [c.178]    [c.284]    [c.209]    [c.207]    [c.180]    [c.312]    [c.313]    [c.101]    [c.299]   
Смотреть главы в:

Химия кремнезема Ч.1 -> Ассоциация с простейшими




ПОИСК





Смотрите так же термины и статьи:

Ассоциация



© 2024 chem21.info Реклама на сайте