Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Низкомолекулярные соединения

    Замещение боковых функциональных групп, имеющихся в макромолекуле, на другие группы или атомы в результате реакции с низкомолекулярными соединениями. Так, из целлюлозы, содержащей в каждом своем элементарном звене три гидроксильные группы, получают ряд эфиров. Реакция нитрования целлюлозы может быть представлена так  [c.200]

    Получение полимеров. Синтетические высокомолекулярные вещества получают из низкомолекулярных соединений в основном реакциями полимеризации и поликонденсации. При реакции полимеризации, которая может быть цепной и ступенчатой, молекулы-мономеры соединяются без изменения элементарного состава и без выделения побочных продуктов. [c.106]


    Из уравнения (VII. 15) видно, что скорость процесса поликонденсации, условия равновесия и выход конечного высокомолекулярного соединения в большой мере определяются количеством низкомолекулярного побочного продукта G в реакционной среде. Зависимость предельной степени поликонденсации j n от константы равновесия К и концентрации низкомолекулярного соединения в реакционной смеси С выражается уравнением [c.198]

    Поверхность глобулярных белков представлена нерегулярно расположенными группами близких друг к другу полярных атомов, между которыми находятся небольшие островки неполярной поверхности [138]. Поэтому в аддитивных расчетах в работе [161] использовались значения вкладов, характерных для сближенных полярных групп. Вклады неполярных атомных групп учитывались пропорционально их доступной поверхности. Вклады заряженных групп учитывались без каких-либо поправок. На рис. 3.12 приведены вычисленные значения Д/С>г в виде отрезков, отложенных вниз от /См. Видно, что экспериментальные значения гидратационных эффектов по абсолютной величине в среднем на 30% ниже вычисленных. Следовательно, на поверхности глобулярного белка нет кооперативных эффектов, усиливающих гидратационный эффект сжимаемости по сравнению с низкомолекулярными соединениями. [c.60]

    Для диоксида углерода при той же температуре 0°С наблюдается вторая сингулярная точка — минимум проницаемости в области, близкой к насыщению [3]. Следует отметить, что для СО2 указанные параметры состояния довольно близки к критическим. Для низкомолекулярных соединений (Нг, Не, Аг, N2, О2, СН4), критические температуры которых заметно ниже температуры разделения, проницаемость непрерывно возрастает с повышением давления в порах мембран [3]. Экспериментальный материал по проницаемости пористых мембран различной структуры достаточно ограничен, однако имеется обширная информация по массопроводности пористых тел при сушке и адсорбции [9, 14], при этом обнаруживаются подобные закономерности изменения кинетических коэффициентов. [c.58]

    Такая закономерность наблюдается для каждого гомологического ряда. Например, из парафиновых углеводородов наиболее термоустойчивы простейшие низкомолекулярные соединения метан и этан. Метая начинает разлагаться при температуре выше 900°. Высокомолекулярные твердые парафины крекируются в весьма мягких условиях. Это положение справедливо и для нефтяного сырья, представляющего собой сложную смесь углеводородов различных классов и различного молекулярного веса. Легче всего разлагаются при нагревании тяжелые нефтяные остатки, например мазут, гудрон, значительно труднее — соляровые фракции, еще труднее — керосиновые и т. д. Наиболее устойчивы при высоких температурах газы. [c.225]


    Так как алифатические сульфохлориды при обработке галоидными соединениями фосфора легко отщепляют сульфогруппы, образуя хлористые алкилы, то обработку солей парафиновых сульфокислот пятихлористым фосфором необходимо вести при возможно более низкой температуре. Тем не менее, если в качестве исходного продукта применяют соли вторичных сульфокислот, которые особенно чувствительны, то нельзя избежать образования также а хлористых алкилов. В случае низкомолекулярных соединений оба вещества — сульфохлорид и хлористый алкил — легко могут быть отделены друг от друга разгонкой. [c.383]

    Применение некоторых эффективных антиоксидантов затруднено из-за их плохой совместимости с полимером, высокой летучести, вымываемости из полимера и др. Была высказана мысль о перспективности применения высокомолекулярных антиоксидантов для стабилизации полимеров [60], которые исключают указанные недостатки низкомолекулярных соединений. В последнее вре- [c.640]

    Биополимеры. Существенная, при рассмотрении проблемы гидратации, особенность биополимеров состоит в наличии больщой и сложной по химическому составу молекулярной поверхности. Возникает вопрос не может ли такая поверхность в отличие от малых молекул оказывать на воду усиленное воздействие вследствие кооперативных эффектов Один из путей решения вопроса состоит в анализе аддитивности термодинамических гидратационных эффектов по атомному составу гидратируемой поверхности. Кооперативность проявилась бы в усилении гидратационного эффекта по сравнению с суммой вкладов поверхностных атомных групп, который подсчитывали на основании анализа низкомолекулярных соединений.  [c.58]

    Теоретические основы. Получение битумов из нефтяного сырья состоит по существу в загущении последнего. В процессе вакуумной перегонки это происходит в результате отгонки сравнительно низкомолекулярных легкокипящих соединений, в процессе деасфальтизации пропаном—вследствие экстрагирования маловязких компонентов сырья, в процессе окисления воздухом — по причине конденсации низкомолекулярных соединений. [c.285]

    Из краткой характеристики специфических свойств высокомолекулярных соединений нефти видно, что эта группа веществ по химическому составу и строению, а также по размерам и неоднородности молекул резко отличается от низкомолекулярных соединений нефти, состоящих преимущественно из углеводородов. Для исследования высокомолекулярных соединений нефти неприменима большая часть классических методов, успешно используемых при изучении углеводородного состава бензино-керосиновых частей нефти. При разделении и исследовании наиболее тяжелой части нефти во много раз возрастает значение физических и физико-химических методов, которые позволяют изучать природу и свойства ее, не вызывая существенных химических изменений в объектах исследования. Именно физические и физико-химические методы разделения и исследования сыграли решающую роль в развитии химии высокомолекулярных органических соединений, определив возможность быстрого ее расцвета и выделения в самостоятельную область химической науки. Такую же роль призваны сыграть современные [c.15]

    Данные работы о независимости уменьшения поверхности и активности катализатора от присутствия соединений, содержащих азот или серу, по-видимому, не противоречат выводам работ приведенным выше. В работе применялся высокоактивный гидрирующий катализатор, а добавки серы и азота вводились в виде низкомолекулярных соединений. Поэтому они не могли затруднять адсорбцию реагирующих углеводородов, а сами относительно быстро превращались. Соединения, содержащие азот и серу, видимо представляют наибольшую опасность при переработке прочно адсорбируемого сырья в условиях недостатка водорода на поверхности катализатора. [c.323]

    Интересны данные о распределении цинка и ртути по молекулярно-весовым фракциям смол и асфальтенов нефти. Оба элемента имеют тенденцию к концентрированию в наиболее высокомолекулярной части [76, 931 ], однако При этом имеется и второй максимум в области низких значений молекулярной массы "(300— 1000). Природа низкомолекулярных соединений цинка и ртути пока не выяснена. [c.173]

    При этом главная цепь высокомолекулярного соединения не затрагивается. Скорость реакций подобного типа в большинстве случаев определяется скоростью диффузии низкомолекулярного соединения в фазу полимера. [c.201]

    Процесс полимеризации капролактама может осуществляться и непрерывно. Полученную ленту дробят на рубильных машинах в крошку (7—8 мм). Затем экстрагируют горячей умягченной водой (95—98°С) непрореагировавший мономер и другие низкомолекулярные соединения. После отжима и сушки крошка расплавляется при 260—270°С и при помощи дозирующего насосика определенными порциями под давлением приблизительно 6 МПа подается через фильтр в фильеру. Струйки расплава из фильеры попадают в высокую шахту, где они обдуваются холодным воздухом, застывают, и образовавшиеся волокна наматываются на бобину. Полученное волокно подвергают вытяжке, крутке, промывке, сушке, перемотке с одновременным замасливанием. Скорость прядения капрона и других синтетических волокон до 1500 м/мин, т.е. много выше, чем вискозного (75—100 м/мин). [c.213]

    При гидрогенизации кислородсодержащих соединений образуются соответствующие углеводороды и вода. Смолы и асфальтены превращаются в более низкомолекулярные соединения. [c.300]

    Мономерами могут быть соединения, содержащие кратные связи (алкены и алкадиены, ацетиленовые углеводороды, производные ненасыщенных кислот и др.), легко раскрывающиеся циклы (оксиды алкенов, лактамы, лактоны и др.), соединения с разнообразными функциональными группами и подвижными атомами (дикарбоновые кислоты, аминокислоты, альдегиды, гликоли, фенолы, диамины и др.). При этом необходимым условием использования низкомолекулярных соединений в качестве мономеров является их полифункциональность. [c.318]


    От функциональности мономера существенно зависит строение полученного полимера. Взаимодействие бифункциональных мономеров дает полимер линейного строения. Реакции, в которых участвует хотя бы один мономер с функциональностью более двух, приводит к образованию полимера разветвленного или пространственного строения. Если в реакции хотя бы одно низкомолекулярное соединение монофункционально, то с мономером любой функциональности оно не образует полимера вследствие блокировки его реакционноспособных точек. [c.319]

    Компоненты дисперсионной среды, обладая низкой молекулярной массой, диффундируют вглубь поры н, адсорбируясь на активных центрах подвергаются соответствующим химическим превращениям (гидрирование слабых связей, гидрогенолиз гетероатомных соединений, термическая деструкция). По мере протекания процессов термодеструктив-ного гидрирования компонентов сольватной оболочки и ядра ССЕ дисперсионная среда обогащается низкомолекулярными соединениями и осколками асфальтенов и смол с гетероатомами, которые с течением времени подвергаются аналогичным превращениям, как и первичные гетероатомные соединения дисперсионной среды. [c.69]

    В добавление к данным, приведенным в табл. 1, интересно отметить, что этилацетат и диэтилоксалат не образуют комплексов. Среди эфиров нормальных двухосновных кислот диэтиловый эфир янтарной кислоты и высшие гомологи образуют комплексы. Как и следовало ожидать, небольшое разветвление низкомолекулярных соединений препятствует комплексообразованию. Так, диэтиловые эфиры 1-метилянтарной и 2-метилглута-ровой кислот, диизопропиловый эфир адипиновой кислоты и диметиловый эфир 2,2 -диметилпробковой кислоты не образуют комплексов. [c.206]

    Хильман и Барнетт (Hillman and Barnett) обнаружили, что в то время как высокомолекулярные сконденсированные поли-ядерные ароматические соединения нерастворимы в большинстве известных растворителей, асфальтовые компоненты, включая и асфальтены, заметно растворимы в целом ряде растворителей. Кроме того, в основном ароматические каменноугольные смолы растворимы в концентрированной серной кислоте, в то время как асфальты нерастворимы и конденсированные полициклические ароматические соединения анализируют на высокое соотношение углерод — водород даже для низкомолекулярных соединений, в то время как асфальтовые комплексы показывают более низкие соотношения для соединейий с более высокими молекулярными весами  [c.543]

    Межцепной обмен в полисульфидных полимерах протекает по. механизму ионного гетеролитического расщепления дисульфидной связи [28]. Скорость реакций межцепного обмена зависит от степени полисульфидности полимера. Исследование кинетики межцепного обмена в массе полисульфидных полимеров позволило определить мольную энергию активации некатализируемого обмена, которая оказалась равной 52,8 кДж/моль. Это значение соответствует энергии активации анионного тиол-дисульфидного обмена низкомолекулярных соединений, осуществленного в полярной среде [29]. [c.561]

    Для подбора состава катализатора и условий реакции, обеспечивающих возможность уменьшения количества образующихся побочных продуктов и для направления реакции в сторону образования хлоропрена свободного от ряда примесей, от которых его трудно очистить ректификацией (в частности, метилвинилкетона, примеси которого в хлоропрене приводят к получению низкомолекулярных соединений и способствуют сшиванию полимера), необходимо было изучить механизм реакции гидрохлорирования как основного продукта — хлоропрена, так и побочных соединений. По схеме реакции, предложенной Карозерсом и Берхетом [29], при взаимодействии ВА с хлористым водородом в солянокислом рас- [c.718]

    Следующие два процесса приводят к образованию высокомолекулярных соединений а) реакция п о л и м е р и з а ц и и — процесс, в результате которого молекулы низкомоле1 улярного соединения (мономера) соединяются друг с другом прн помощи ковалентных связей, образуя новое вещество (полимер), молекулярная масса которого в целое число раз больше, чем у мономера полимеризация характерна, главным образом, для соединений с кратными (двойными или тройными) связями б) реакция п о л и ко н д е н с а ц и и — процесс образования полимера из низкомолекулярных соединений, содержащих две или несколько функциональных групп, сопровождающийся выделением за счет этих групп таких веществ как вода, аммиак, галогеноводород и т. п. состав элементарного звена полимера в этом случае отличается от состава исходного мономера. [c.499]

    Существуют ли принципиальные различия в гидратации биополимеоов и гидратации отдельных низкомолекулярных соединений, из которых они состоят  [c.46]

    Здесь KfA — собственная сжимаемость молекулы растворенного вещества (для низкомолекулярных соединений /См определяется сжимаемостью ковалентных связей и вандерваальсо-вых радиусов составляющих ее атомов эта сжимаемость мала и обычно ею пренебрегают [145—147, 164]) A/ i — изменение сжимаемости воды в гидратной оболочке К, 2 — сжимаемость контактов между молекулой растворенного вещества и окружающими молекулами воды. Смысл вклада Ki,2 можно пояснить на примере гидрофобных молекул, не образующих водородных связей с молекулами воды. В водном растворе гидрофобная молекула находится в полости, образованной сеткой водородно-связанных молекул воды. Так организованы клат-ратные гидраты [165], такие структуры получаются в машинных экспериментах, выполненных методами Монте-Карло и молекулярной динамики [166, 167]. Объем полости, занимаемой молекулой растворенного вещества, должен превышать ее ван- [c.50]

    Большая часть полярных атомных групп на поверхности белков и нуклеиновых кислот расположена близко друг к другу, так что молекула воды в гидратной оболочке может связываться с поверхностью двумя водородными связями [138— 140]. Поэтому хорошей моделью для изучения свойств воды полярной поверхности биополимеров могут служить полифунк-циональные низкомолекулярные соединения со сближенными полярными группами, такие, например, как сахара, аминокислоты и др. [c.54]

    Проведенные исследования (Н. В. Кочергин, У. Бестереков) показали, что обратный осмос может успешно использоваться для очистки и концентрирования растворов капролактама. При существующем в настоящее время способе производства поликапроамида достигается степень полимеризации 88—90%- В то же время содержание низкомолекулярных соединений в целевом продукте не должно превышать 0,5— 1,5%. Эта концентрация достигается в процессе экстракции капролактама из полимера дистиллированной водой. Процесс осуществляется при непрерывной циркуляции промывных вод через экстрактор. Всего проводится 5 промывок 3 из них — горячей умягченной водой (при температуре около 97°С) и 2 — холодной (при температуре 20°С). Первая промывка проводится оборотной водой после второй промывки, вторая и последующие — оборотной водой после третьей, четвертой и пятой промывок соответственно. В получаемой в результате этих промывок воде содержится от 3 до 8% низкомолекулярных соединений. [c.265]

    Никель появляется во фракциях с температурой кипения около 300° и его распределение подчиняется тем же закономерностям, что и распределение железа [786, 959]. Кобальт при перегонке нефти целиком концентрируется в остатке (500°) [786, 880]. При разделении нефти на компоненты кобальт полностью попадает в асфальтены, главным образом в их высокомолекулярную часть (4000— 8000 и 8000—22 000 по данным гель-хроматографии) [76]. Видимо, он связан в комплексы с тетрадентатными лигандами. Распределение железа и никеля по молекулярно-весовым фракциям носит бимодальный характер. Природа низкомолекулярных соединений никеля достаточно изучена они представлены комплексами с порфиринами. При возрастании молекулярной массы фракции растет доля непорфириновых соединений никеля. По своей природе они, по-видимому, аналогичны непорфириновым соединениям ванадия [8, 76]. Для высокомолекулярных соединений железа также справедливо то, что сказано о непорфириновом ванадии. Природа низкомолекулярных соединений железа в нефти до сих пор не ясна. Наличие нафтенатов железа исключается [926, 927, 973], но допускается возможность существования железо-порфириновых комплексов, аналогичных найденным в сланцах [390, 794, 798]. Предполагается также существование кобальт-порфиринов в концентрациях ниже предела обнаружения. Это может объяснить присутствие небольшого количества кобальта в низкомолекулярных фракциях смол и асфальтенов (300—1000) [76]. [c.179]

    Таким образом, на всех этапах преобразования нефти в условиях недр состав и строение содержащихся в ней смолисто-асфальтовых и низкомолекулярных соединений будет определяться природой исходных нефтематеринских веществ, предысторией и глубиной превращениости нефтяной системы. [c.201]

    Экспериментальные данные и опыт эксплуатации полимерных материалов в условиях воздействия агрессивных сред позволяют делать выводы о связи мелсду структурой высокомолекулярных соединений и их химической стойкостью, В отличие от низкомолекулярных соединений, макромолекула содержит большое число реакционноспособных групп, в зависимости от характера которых или замены их другими группами свойства полимера могут в значительной степени изменяться в сторону их ухудшения или улучшения. Например, на поливиниловый снирт, содержащий гидроксильные группы, оказывают влияние вода, кислоты и щелочи. Стойкость поливинилацет ата, полиакриловой кислоты и других высокомолекулярных соединений, которые можно представить как производные полиэтилена при частичном или полном замещении водорода гидроксильными, ацетатными или другими функциональными группами, также понижена. Соединения, у которых водород в полиэтиленовой н,епи замещен фтором или фтором и хлором, стойки во всех агрессивных средах. [c.357]

    Вез синтетические полимеры получают двумя основными путями--полимеризацией и поликонденсацией. Для первой из этих реакц 1Й требуются мономеры, т. е. вещества, способные под влиянием гепла, света, облучения илн катализаторов соединяться друг с другом без выделения каких-либо низкомолекулярных соединений и давать длинные цепи полимера с тем же составом элементарных звеньев, как в исходном мономере  [c.9]

    Специфические качества высокомолекулярных соединений, которые не свойственны низкомолекулярным соединениям,возникают только тогда, когда число звеньев в цепной молекуле достигнет определенного для данного полимера значения. При дальнейшем увеличении числа звеньев изменяется только количественная ха-ралтеристнка этих специфических качеств высокомолекулярных соединений. Соединения, цепные молекулы которых содержат звеньев меньше, чем это необходимо для придания отличительных полимерных свойств, называются олигомерами от греческого слова олигос , что означает мало . [c.370]

    Для синтетического получения органических полимеров обычно используются два метода — метод полимеризации и метод поликонденсации. Полимеризацией называется реакция соединения молекул мономера с образованием макромолекулярных цепей, звенья которых имеют тот же элементарный состав, что и молекулы исходного мономера, причем не происходит выделения каких-либо побочных продуктов. Поликонденсоцией называется реакция взаимодействия низкомолекулярных соединений, приводящая к образова- [c.371]

    Для высокомолекулярных соединений характерны некоторые общие свойства. Они, как правило, трудно растворимы, причем растворимость падает по мере увеличения молекулярной массы. Обычно растворение идет очень медлс-нно, н ему часто предшествует набухание, в ходе которого молекулы растворителя проникают в массу растворяемого полимера. Полученные растворы, даже при невысоких концентрациях, обладают большой вязкостью, во много раз превосходящей вязкость концентрированных растворов низкомолекулярных соединений. Есть высокомолекулярные соединения, которые вообще не растворяются. [c.187]

    У л ьт р а ф и л ь т р о в а н и с — процесс разделения высокомолекулярных и низкомолекулярных соединений в жидкой фазе с использованием селективных мембран, пропускающих преимущественно или только молекулы низксмолекулярных соединений. Движущей силой ироцссса является разность давлений— рабочего (0,3—1 МПа) и атмосферного — по другую сторону мембраны. [c.79]

    Мономерами (от греч. monos — один, meros — часть) называются низкомолекулярные соединения преимущественно органической природы, молекулы которых способны вступать в реакцию друг с другом или с молекулами других соединений с образованием высокомолекулярных соединений или полимеров. [c.318]


Смотреть страницы где упоминается термин Низкомолекулярные соединения: [c.31]    [c.120]    [c.346]    [c.72]    [c.43]    [c.61]    [c.176]    [c.560]    [c.134]    [c.137]    [c.370]    [c.199]    [c.239]    [c.319]   
Смотреть главы в:

Установление структуры органических соединений физическими и химическими методами -> Низкомолекулярные соединения

Установление структуры органических соединений физическими и химическими методами том 1 -> Низкомолекулярные соединения

Практическое руководство по жидкостной хроматографии -> Низкомолекулярные соединения

Полиэтилен полипропилен и другие полиолефины -> Низкомолекулярные соединения

Установление структуры органических соединений физическими и химическими методами Книга1 -> Низкомолекулярные соединения


Нефтяной углерод (1980) -- [ c.0 ]

Нефтяной углерод (1980) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте