Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вода сжимаемость

Рис. 3.7. Температурная зависимость коэффициента сжимаемости (Л) и объема (5) воды [174, 175], ртути [172], метанола и этанола fl72, 173] Рис. 3.7. <a href="/info/39977">Температурная зависимость коэффициента</a> сжимаемости (Л) и объема (5) воды [174, 175], ртути [172], метанола и этанола fl72, 173]

    Метод Бернала и Фаулера и его модификации. Другое направление теоретических работ по энергиям гидратации начинается с исследований Бернала и Фаулера (1933), посвященных природе воды и льда. Как известно, вода обладает рядом аномалии. Ее плотность увеличивается при плавлении и продолжает расти в интервале температур от О до +4° С. При +4° С плотность максимальна и примерно на 10% превышает плотность льда при температ ре плавления. Теплоемкость воды минимальна при +34,5° С в интервале от О до 45° С сжимаемость воды уменьшается с ростом температуры и т. д. [c.60]

    Проточная часть коммуникаций оказывает сопротивление движению газа. Поэтому давление газа р перед всасывающим патрубком последующей ступени ниже давления P2(i-i) предыдущей. Не равны также температуры перед всасывающими патрубками всех ступеней компрессора. Температура газа, температура охлаждающей воды и их разность изменяются в течение года. Поверхности охлаждения холодильников со временем загрязняются, ухудшается коэффициент теплопередачи между газом и водой. Сжимаемые в компрессоре газы могут быть влажными. При их сжатии повышается парциальное давление водяного пара. После охлаждения в межступенчатом холодильнике пар- [c.81]

    Сжимаемость воды. Вода обладает незначительной сжимаемостью. Это следует учитывать при конструировании водяной системы высокого давления. Увеличение объема воды в результате нагрева ее и практически незначительная сжимаемость требуют у безнапорных систем установки расширительного сосуда, а у систем [c.289]

    Если газосодержание в образце меньше, чем в воде, поступающей в питательную трубку, то в начале опыта величина а будет больше, а величина р меньше, чем в последующее время, поскольку с ростом содержания газа в воде сжимаемость ее увеличивается. [c.38]

    В сильных электролитах при больших разведениях многие величины, характеризующие свойства растворенных веществ, оказываются аддитивно складывающимися из соответствующих свойств ионов. Такими величинами являются кажущийся объем соли, теплота гидратации, сжимаемость и некоторые другие. Это естественно, поскольку при полной диссоциации соли в разбавленном растворе свойства одних ионов никак не влияют на взаимодействие других ионов с растворителем. Однако представление того или иного измеренного (вернее, вычисленного по результатам измерений) термодинамического свойства растворенной соли как суммы свойств ионов этой соли и нахождение величины слагаемых этой суммы невозможно без использования какого-либо более или менее произвольного предположения. Теплоты (энергии) гидратации отдельных ионов могут быть получены из вычисленных по уравнению (XVI, 55) теплот гидратации солей, если предположить, что энергии гидратации ионов и С1 одинаковы (с учетом различия в ориентировке молекул воды около аниона и катиона) . Другой метод определения теплоты гидратации заключается в подборе аддитивных слагаемых таким образом, чтобы величины энергий сольватации ионов линейно зависели от величин, обратных радиусам ионов. Вычисленные разными способами теплоты гидратации того или другого иона полуколичественно согласуются между собой. Теплоты гидратации одновалентных ионов имеют величины по- [c.420]


    Следовательно, при одной и той же температуре концентрация молекулярных роев, подобных льду-1, в тяжелой воде несколько больше, а концентрация молекул, образующих структуру II, наоборот, несколько меньше, чем в обычной воде. Ввиду этого из изложенной выше трактовки аномалии сжимаемости воды следует, что до минимума сжимаемости обычной воды при одной и той же температуре у тяжелой воды сжимаемость должна быть больше, чем у ее обычного аналога. [c.167]

    Число гидратации можно также получить, измеряя сжимаемость воды и раствора. Коэффициент сжатия для первого гидратного слоя должен быть меньше, чем для остального растворителя. Определив [c.66]

    Нуклеиновые кислоты. Основным типом организации вторичной структуры нуклеиновых кислот является двойная спираль, состоящая из двух полинуклеотидных цепей. Существует ли со стороны регулярной структуры спирали дополнительное-воздействие на воду по сравнению с воздействием отдельных нуклеотидов Этот вопрос исследовался акустическим методом для различных типов спиральных структур полинуклеотидов [149], В качестве гидратационной характеристики использовали концентрационный инкремент скорости ультразвука А, который связан с парциальными объемами и сжимаемостью соотношением [c.61]

    Это можно объяснить тем, что полифункциональная молекула является как бы жесткой матрицей , которая благодаря наличию многих центров связывания стабилизирует структуру окружающей воды в некой заданной конфигурации. В результате уменьшается релаксационная составляющая сжимаемости и теплоемкости. Температурная зависимость сжимаемости воды приближается к линейной, что свойственно нормальной жидкости. Заметим, что определению стабилизация структуры воды разные авторы придают различный смысл. Здесь под ним понимается сохранение геометрии водородных связей и уменьшение разнообразия возможных конфигураций. [c.55]

    Сжимаемый газ охлаждают в турбокомпрессорах введением воды в специальные камеры, окружающие рабочие колеса, ил 1 в отдельно расположенных холодильниках. [c.265]

    В процессе работы ротационной компрессорной установки могут быть следующие неполадки заедание и поломка пластин вследствие перекоса ротора — надо остановить машину и устранить перекос сработка ограничительных колец — разобрать хма-шину и заменить их чрезмерный нагрев сжимаемого газа в результате малой подачи на компрессор охлаждающей воды и загрязнения водного пространства и т. п. Причины нагрева подшипников и методы их устранения аналогичны ранее рассмотренным. [c.306]

    При отсутствии воды в пласте, полагая водонасыщеннос ь 5 = О и Гд = О, получим частный случай установившегося течения газироваН ной нефти. В этом случае расчеты существенно упрощаются. Для фазовых проницаемостей можно использовать стандартные зависимости k (s), k (s), (j = j ), известные для газожидкостной системы (смуГд , ),. Кроме того, будем считать, что коэффициенты вязкостей 17 , не зависят от давления, нефть слабо сжимаема, так что 1, а, гдз-совершенный (см. гл, 2), для которого справедливо следующее равенство  [c.295]

    Опытные данные работы одноступенчатого поршневого воздушного компрессора с внешним охлаждением свидетельствуют о том, что передача тепла сжимаемого воздуха через стенку цилиндра незначительна. Это подтверждается тем, что средний показатель политропы линии сжатия компрессора для одного из режимов работы оказался равным /г1=1,39, что незначительно отличается от показателя адиабаты для воздуха =1,4. За счет внешнего охлаждения компрессоров можно в основном рассчитывать на отвод тепла трения деталей цилиндро-поршневой группы, и лишь в компрессорах с малыми размерами цилиндра возможен частичный отвод тепла от сжимаемого воздуха (газа). Это объясняется тем, что с увеличением диаметра цилиндра и хода поршня объем газа в цилиндре увеличивается пропорционально кубу размеров, а поверхность теплопередачи от газа к охлаждающей воде возрастает пропорционально квадрату размеров цилиндра. [c.131]

    Рассматривая пределы испарения впрыскиваемой воды, Л. Г. Шереметьев исходит из эмпирического закона Дальтона, согласно которому скорость испарения пропорциональна разности между давлением насыщенных паров ра и парциальным давлением паров рп при температуре смеси сжимаемого рабочего тела и паров увлажняющей жидкости [c.137]

    При анализе состояния рабочего тела, охлаждаемого впрыскиванием воды, Г. А. Михайловский [80] за основную энергетическую характеристику процесса испарительного охлаждения воздуха принимает теплоемкость сжимаемой смеси. [c.141]

    Чистая вода обладает рядом аномалий, отличающих ее от большинства других жидкостей. К таким аномалиям относятся немонотонные зависимости сжимаемости, теплоемкости, плотности. Немонотонность вызвана необычно большими вкладами структурной релаксации воды в термодинамические характеристики, обусловленными лабильностью сети водородных связей по отношению к изменению температуры или давления. Сжимаемость воды К, как и любой другой жидкости, определяется выражением [c.52]


    В сильном электростатическом поле иона структура воды значительно меняется, что приводит к потере ею аномальных свойств и, как следствие, к линеаризации температурных зависимостей сжимаемости и объема. [c.54]

    По характеру воздействия на термодинамические свойства воды сближенные полярные атомные группы сходны с заряженными, только выражено это воздействие в меньшей степени. Вклады в AKh и АСр,н отрицательны, отрицательна также вторая производная парциальной сжимаемости [149, 161, 168, 183—185]. Следовательно, вода в гидратной оболочке имеет пониженную сжимаемость и теплоемкость и более линейную, чем у чистой воды, температурную зависимость сжимаемости. [c.54]

    На рис. 3.8 показана температурная зависимость парциальной сжимаемости сахарозы как пример поведения молекул, содержащих большое число сближенных друг с другом атомных групп [185]. Одиночные полярные группы качественно отличаются от сближенных групп по действию на свойства воды. При этом под одиночной понимается атомная группа, удаленная от других полярных атомных групп на расстояние не менее четырех СНг-групп между ними. Термодинамические эффекты сближения полярных групп известны давно (см., например, [151, 152, 168]). Они учитываются при аддитивных расчетах парциального объема, теплоемкости, свободной энергии и энтальпии гидратации [168]. Наиболее ярко эти различия проявляются при изучении сжимаемости. В работе [161] проведен аддитивный анализ парциальной адиабатической сжимаемости аминокислот и спиртов и показано, что вклад в сжимаемость от одиночной полярной группы, во-первых, положителен и, во-вторых, его температурная зависимость имеет отрицательную первую и положительную вторую производную, — т. е. все названные величины противоположны по знаку тем же величинам для сближенных атомных групп (рис. 3.9). [c.55]

    В работе [161] показано, что при неглубоком смещении равновесия в сторону состояния с пониженной плотностью и пониженной энтальпией есть такая область концентрации двух структур, в пределах которой увеличение второй производной объема воды соответствует уменьшению второй производной сжимаемости до нуля и меньше. На структурном уровне понижению энтальпии соответствует упрочнение водородной связи, что согласуется со спектроскопическими данными [189] и результатами машинных расчетов [166, 167]. [c.57]

    Если отнести вклад Xi,2 в парциальную сжимаемость к свойствам гидратной оболочки и принять пл = 4 (число ближайших соседей), то, как показывает расчет сжимаемости воды в гидратной оболочке, она мало отличается от сжимаемости чистой воды [161, 190]. Крутой рост парциальной сжимаемости с повышением температуры объясняется увеличением амплитуды тепловых движений молекул, или, иначе говоря, расширением полости вокруг молекулы растворенного вещества. [c.57]

    Совокупность экспериментальных данных о термодинамических свойствах растворов органических соединений свидетельствуют о том, что изменения свойств воды вокруг органических молекул и их отдельных атомных групп затрагивают одну или, как максимум, две координационные сферы. Это заключение справедливо как для заряженных, так и для полярных и гидрофобных молекул и атомных групп. Свойства воды в пределах этого объема (гидратной оболочки) существенным образом зависят от типа атомной группы. Наиболее сильные изменения свойств воды наблюдаются в гидратных оболочках заряженных атомных групп. При этом происходит полная потеря присущих объемной воде аномальных свойств, таких, как немонотонные и нелинейные температурные зависимости плотности и сжимаемости, наличие большого структурного вклада в сжимаемость и др. В гидратной оболочке сближенных полярных атомных групп свойства воды также приближаются к свойствам нормальных жидкостей, однако в отличие от заряженных атомных групп эффект нормализации выражен гораздо слабее. Наименьшее воздействие на воду оказывают одиночные полярные группы, свойства воды в гидратной оболочке этих групп близки к свойствам чистой воды. Характеристики гидратных оболочек гидрофобных атомных групп значительно отличаются [c.62]

    Известно, что кэки осадков сточных вод — сжимаемые материалы, которые по мере увеличения дa влeния могут деформироваться, в силу чего уменьшается их пористость, а следовательно, увеличивается удельное сопротивление. Известно также, что при вакуум-фильтрации скорость водоотдачи осадков возрастает в несколько десятков раз по сравнению с естественным фильтрованием. Таким образом, увеличение давления, с одной стороны, увеличивает скорость водоотдачи осадка, с другой— можех привести к повышению его удельного сопротивления, что в свою очередь также может вызвать снижение производительности вакуум-фильтра. [c.62]

    Предельно возможный чрезвычайно наглядный пример дает изучение надкритических растворов. При плотности Н2О 0,3 см частичный мольный объем N301 в паровой фазе при температуре выше - критической температуры воды (374°) может достигать —5000 м мoлъ. Коэффициент сжимаемости пара при этой температуре и плотность почти в 20 раз больше, чем у воды при 25°. (Данные из работы [28].) [c.442]

    При теоретических исследованиях охлаждения компрессора впрыскиванием воды в цилиндр Л. И. Слобо-дянюк и Ю. Н. Гогин [108] принимают, что вода к сжимаемому воздуху подводится в течение всего процесса сжатия и что подводимая вода испаряется мгновенно. Количество воды а (в кг/кг), подаваемое в цилиндр компрессора, с целью осуществления желаемого политропического процесса сжатия определяется по формуле [c.140]

    Воропай П. И., Жуков Г. В., Касьянов В. М. Исследования эффективности охлаждения при подаче воды в поток воздуха, сжимаемого роторно-шестеренчатым нагнетателем. — Машины и нефтяное оборудование. 1963. № 10. с. 21—28. [c.346]

    Введенные в полярную жидкость ионы нарушают структуру растворителя на больших расстояниях вокруг ионов. На это указывают результаты рентгенографических и спектроскопических 1 следований растворов и некоторые другие факты (например, увеличение энтропии растворителя при высоких концентрациях ионов). Особенно заметно разрушающее действие на структуру воды ионов больших размеров, тогда как ионы небольшого размера помещаются в пустотах воды и мало изменяют ее структуру. Координационное число ионов средних размеров, особенно одновалентных, в разбавленных растворах равно четырем. Очевидно, они просто замещают молекулы воды в целом, не изменяя структуры последней. Правда, они притягивают и ориентируют находящиеся вблизи молекулы воды и, образуя сольватную оболочку, несколько искажают структуру воды в ближайшем окружении (уменьшается объем, теплоемкость, энтропия, сжимаемость раствора). Однако можно считать, что структура воды в растворе искажена незначительно и да51 е в сольватной оболочке напоминает структуру чистой воды. [c.421]

    Здесь нужно учесть два обстоятельства в свежеотложенном илв воды больше, чем в песках, и, кроме того, уплотнение оказывает большее действие на глины, чем на пески по причине их меньшей сжимаемости. Вследствие этого выжимаемая при уплотнении жидкость будет двигаться от пунктов наибольшего уплотнения к пунктам наименьшего уплотнения, т. е. из глин в пески, где будут скопляться нефть и вода, которые потом расположатся по удельному весу. [c.186]

    Не зависят от выбора эталонной жидкости методы, основанные на измерении теплового расширения воды, заполняюшей тонкие поры [33]. Для исследований брали высокодисперсные порошки белой сажи и рутила с низким коэффициентом теплового расширения. Порошок запрессовывали для получения плотной упаковки и малых пор под давлением около 10 Па в сосуд из инвара — сплава также с очень низким коэффициентом теплового расширения ( — 10 град ). Пористость упакованного порошка составляла около 0,5, что отвечало среднему радиусу пор г = 5 нм. Порошок заполняли под вакуумом предварительно обезгаженной водой. Контроль за отсутствием остаточного воздуха в порошке проводили путем проверки сжимаемости системы. [c.12]

    В работе [149] измерялись также объемные эффекты ионизации и изменения сжимаемости. Таким образом, взаимовлияние атомных групп нуклеотидов и нуклеозидов на гидратацию проявляется на расстояниях 0,6—0,8 нм между вандерваальсо-выми поверхностями групп, что соответствует двум-трем слоям молекул воды, т. е. менее чем двум слоям в гидратной оболочке. [c.50]

    Здесь KfA — собственная сжимаемость молекулы растворенного вещества (для низкомолекулярных соединений /См определяется сжимаемостью ковалентных связей и вандерваальсо-вых радиусов составляющих ее атомов эта сжимаемость мала и обычно ею пренебрегают [145—147, 164]) A/ i — изменение сжимаемости воды в гидратной оболочке К, 2 — сжимаемость контактов между молекулой растворенного вещества и окружающими молекулами воды. Смысл вклада Ki,2 можно пояснить на примере гидрофобных молекул, не образующих водородных связей с молекулами воды. В водном растворе гидрофобная молекула находится в полости, образованной сеткой водородно-связанных молекул воды. Так организованы клат-ратные гидраты [165], такие структуры получаются в машинных экспериментах, выполненных методами Монте-Карло и молекулярной динамики [166, 167]. Объем полости, занимаемой молекулой растворенного вещества, должен превышать ее ван- [c.50]

    Аналогичные выражения справедливы для теплоемкости п коэффициента теплового расширения. Структурные величины обычно сильно зависят от температуры. При комнатных (и более низких) температурах структурные вклады аномально велики. Так, в случае сжимаемости KstrlKoa ., b [170], в то время как для большинства других жидкостей это отношение меньше единицы [171]. В конечном счете все аномалии воды обусловлены лабильностью структуры воды в отношении воздействия теплом или давлением. В ряду наиболее характерных аномалий воды — резко нелинейная температурная зависимость объема, сжимаемости и теплоемкости с положительной второй производной. Это проиллюстрировано на рис. 3.7 на примере объема и сжимаемости воды и, для сравнения, сжимаемости нормальных жидкостей — спиртов и ртути [172—175]. [c.52]

    Для электролитов КС1, Na l, КВг, KI значения пп, при.хо-дящиеся на пару катион-анион, рассчитанные по 2° и К2°, получаются равными 18—22 [149]. Это примерно соответствует числу молекул воды, которые размещаются в пределах слоя в 0,4 нм вокруг иона (для пары ионов), что хорошо согласуется с результатами, полученными методом молекулярного щупа . Такая же картина наблюдается и в случае цвиттерио-нов аминокислот [161]. В-третьих, рассчитанные этим методом значения пн для Na l на основании независимых данных о парциальном объеме и парциальной сжимаемости совпадают. [c.54]

    Как видно из проведенного обсуждения, абсолютные значения парциальных молярных величин — сжимаемоста, теплоемкости и объема ионов — и их температурные зависимости свидетельствуют о том, что вода в гидратной оболочке утрачивает аномальные свойства, присущие ей в объемной фазе. [c.54]

    Избыточный объем СНг-группы положителен, слабо зависит от температуры и нелинейно растет с ее повышением (рис. 3.10, й) [151, 161, 183, 184]. Последнее обстоятельство указывает на усиление аномальности свойств воды в результате (как считали Хепплер [183] и Нил и Горинг [184]) структурообразующего действия алифатического радикала. Однако этому противоречит характер температурной зависимости парциальной сжимаемости (рис. 3.10,6) наличие области температур с отрицательными значениями AK l и отрицательная вторая производная температурной зависимости указывают на уменьшение релаксационной составляющей сжимае- [c.56]


Смотреть страницы где упоминается термин Вода сжимаемость : [c.166]    [c.135]    [c.39]    [c.64]    [c.296]    [c.51]    [c.51]    [c.52]    [c.53]    [c.53]    [c.60]   
Физика и химия в переработке нефти (1955) -- [ c.7 ]




ПОИСК





Смотрите так же термины и статьи:

Сжимаемость



© 2025 chem21.info Реклама на сайте