Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фруктозо фосфат в гликолизе

    Второй реакцией гликолиза является превращение глюкозо-6-фос-фата под действием фермента глюкозо-6-фосфат-изомеразы во фруктозо-6-фосфат  [c.329]

Рис. 15-13. Механизм, с помощью которого регулируется включение остатков глюкозы в процесс гликолиза и расщепление их на этом пути. Регуляторное ингибирование обозначено красными прерывистыми стрелками, указывающими на блокируемый этап (красная полоска поперек стрелки, показывающей направление реакции) регуляторное стимулирование обозначено красными жирными стрелками, параллельными стрелкам, показывающим направление реакции. Г1Ф-глюкозо-1-фосфат Г6Ф-глюкозо-6-фосфат Ф6Ф - фруктозо-6-фосфат Рис. 15-13. Механизм, с помощью которого <a href="/info/786899">регулируется включение</a> остатков глюкозы в <a href="/info/1546395">процесс гликолиза</a> и расщепление их на этом пути. Регуляторное ингибирование обозначено красными прерывистыми стрелками, указывающими на блокируемый этап (красная полоска поперек стрелки, показывающей <a href="/info/12621">направление реакции</a>) регуляторное стимулирование обозначено красными жирными стрелками, параллельными стрелкам, показывающим <a href="/info/12621">направление реакции</a>. Г1Ф-глюкозо-1-фосфат Г6Ф-глюкозо-6-фосфат Ф6Ф - фруктозо-6-фосфат

    Г-глюкоза ГбФ-глюкозо-б-фосфат Ф6Ф-фруктозо- 6-фосфат ФДФ - фрукто зо-1,6-дифос-фат ТФ-триозофосфат ЗФГ-3-фосфоглицерат. Здесь показаны не все промежуточные продукты гликолиза. [c.467]

    Вторая реакция гликолиза (пути, ведущего вниз ), которая не может использоваться для глюконеогенеза (пути, ведущего вверх ),-это реакция фосфорилирования фруктозо-6-фосфата, катализируемая фосфофруктокиназой [c.605]

    Глюкозо-6-фосфат превращается во фруктозо-6-фосфат (ср. разд. 17.2.1), являющийся исходным соединением гликолиза фруктозы. Образующийся далее в ходе фосфорилирования фруктозо-1,6-дифосфат расщепляется на две молекулы триозо- [c.278]

    В нескольких работах было показано значение (действенность) диссипативной химической энергии. Рихтер и Росс [172] рассмотрели в качестве главного гликоли-тического механизма фосфофруктокиназную реакцию, преобразующую фруктозо-6-фосфат во фруктозо-1,6-дифосфат. Исходя из модели гликолиза Селькова (см. первую часть настоящей книги), Рихтер и сотр. [174] пришли к выводу, что гликолитическая система эффективна для преобразования химической энергии. В работе [173] Рихтер и Росс вновь высказали предположение, что механизм, генерирующий колебания в гликолизе, может эволюционировать так, что будет уменьшаться диссипация свободной энергии. [c.125]

    АЛЬДОЛАЗЫ, ферменты класса лиаз. Содержатся в микроорганизмах, грибах, высших растениях, разл. тканях млекопитающих. Катализируют конденсацию альдегидов с образованием новой углерод-углеродной спязи, Напб. и.ту-чена В-фруктозо-1,6-дифосфат-В глицеральдеги.ч-З-фосфат-лиаза, для к-рой мол. м. 147 000—180 ООО, оптим. каталитич. активность при pH 7,5—8,5 состоит из двух субъединиц. Катализирует р-цию фруктозодифосфат 3-фосфоглице-риновый альдегид -)- фосфодиоксиацетон. Р-цпи, катализируемые А.,— важный этап анаэробного превращ, углеводов при гликолизе и брожении. [c.27]

    Фосфофруктокиназа — один из ключевых ферментов, регулирующих процесс гликолиза в целом. Активной формой фермента является тетрамер, состоящий из 4 субъединиц с молекулярной массой 83 000 Да каждая. В зависимости от условий тетрамеры могут превращаться в высокополимерные агрегаты или диссоциировать на неактивные димеры и мономеры. Фосфофруктокиназа является аллостерическим ферментом. К числу аллостерических эффекторов относятся субстраты (АТФ, фруктозо-6-фосфат) и продукты реакции (АДФ, фруктозо-1,6-дифосфат), а также такие метаболиты, как АМФ, цАМФ, цитрат, фруктозо-2,6-дифосфат, фосфокреатин, 3-фосфоглицерат, 2-фосфо-глицерат, фосфоенолпируват, ионы МН4+, К+, неорганический фосфат и др. [c.238]

    При изучении регуляции альтернативных метаболических путей, таких как гликолиз и глюконеогенез, большое значение придается ключевым реакциям, некоторые участники которых являются общими интермедиатами указанных метаболических путей. К числу таких химически различных альтернативных реакций относятся, например, фосфофруктокиназная и фруктозо-1,6-дифосфатазная реакции гликолиза и глюконеогенеза соответственно. Указанные реакции катализируют так называемый субстратный цикл обратимого превращения фруктозо-6-фосфата во фруктозо-1,6-дифосфат, протекающего с затратой одной молекулы АТФ. [c.354]


    АЛЬДОЛАЗЫ, ферменты класса лиаз, катализирующие альдольную конденсацию и обратную ей р-цию. Молекулы А. класса I состоят из 4 субъединиц одинаковой мол. массы (по 30-40 тыс). Проявляют оптим. каталитич. активность при pH 7,0-9,0, инактивируются КаВНд. Для А. из ряда источников определена первичная структура. Наиб, изученный и распространенный представитель-фруктоз о-бисфосфат-альдолаза, к-рая при гликолизе катализирует расщепление по одинаковой схеме фруктозо-1,6-дифосфата и фруктозо-1-фосфата, напр.  [c.113]

    Более сложные механизмы регуляции О.в. обусловлены прямыми и обратными управляющими связями. Суть их состоит в воздействии метаболитов на интенсивность биохим. процессов, в к-рых они сами образуются или испытывают превращения. В О.в. регуляция активности ферментов часто осуществляется посредством аллостерич. взаимод. ферментов с субстратами или промежут. продуктами (см. Ферменты). Классич. пример подобной регуляции с отрицат. обратной связью-подавление изолейцином собств. биосинтеза в результате его аллостерич. взаимод. с ферментом треониндегидратаза, катализирующим начальную р-цию пути биосинтеза изолейцина. Пример положит, прямой связи-стимуляция синтеза фосфоенолпирувата в гликолизе предшествующими метаболитами фруктозо-1,6-дифосфатом, глюкозо-6-фосфатом и глицеральдегид-З-фос-фатом. Управляющие связи такого рода позволяют стаби- [c.317]

    В условиях, когда потребность в НАДФН значительно превышает потребность в рибозо-5-фосфате, возможна реализация др. механизма, в соответствии с к-рым образующийся рибозо-5-фосфат превращ. не в глюкозо-б-фосфат, а в пировиноградную к-ту (пируват) в результате гликолиза фруктозо-б-фосфата и глицеральдегид-З-фосфата, образующихся в р-циях 6-8. При этом образуются НАДФН, НАДН (восстановленная форма никотинамидадениндинуклеотида) и АТФ по суммарному ур-нию  [c.464]

    Гликолиз заканчивается лактатдегидрогеназной реакцией, где при участии кофермента НАД" из пирувата образуется лактат - конечный продукт гликолиза. Гликолиз является основным путем превращения всех гек-соз, но при этом они превращаются либо в глюкозу-1-фосфат, глюкозуб-фосфат, либо во фруктозу-6-фосфат. [c.80]

    Превращение фруктозо-1,6-бисфосфата во фруктозо-6-фосфат. Фосфоенолпируват, образовавшийся из пирувата, в результате ряда обратимых реакций гликолиза превращается во фруктозо-1,6-бисфосфат. Далее следует фосфофруктокиназная реакция, которая необратима. Глюконеогенез идет в обход этой эндергонической реакции. Превращение фруктозо-1,6-бис-фосфата во фруктозо-6-фосфат катализируется специфической фосфатазой  [c.340]

    При определенных условиях пентозофосфатный путь на этом этапе может быть завершен. Однако при других условиях наступает так называемый неокислительный этап (стадия) пентозофосфатного цикла. Реакции этого этапа не связаны с использованием кислорода и протекают в анаэробных условиях. При этом образуются вещества, характерные для первой стадии гликолиза (фруктозо-6-фосфат, фруктозо-1,6-бисфосфат, фосфотриозы), а другие—специфические для пентозофосфатного пути (седогептуло-зо-7-фосфат, пентозо-5-фосфаты, эритрозо-4-фосфат). [c.356]

    Организм человека или животного не в состоянии построить глюкозу из неорганических веществ. Однако в печени и в почках молочная кислота и а-аминокислоты могут превращаться в глюкозу глюконеоге-нез). Важным промежуточным продуктом при этом, как и при деструкции глюкозы, является та же пировиноградная кислота. Тем не менее глюконеогенез не представляет собой просто обращения процесса гликолиза. Дело в том, что в перечисляемых ниже трех ступенях гликолиза равновесие сильно смещено в сторону образования продуктов реакции при реакции, катализируемой гексокиназой, в сторону получения глю-козо-6-фосфата при реакции, катализируемой фосфофруктокиназой — в сторону фруктозо-1,6-дифосфата при реакции с участием пируваткиназы — в сторону пировиноградной кислоты. Поэтому в процессе глюконеогенеза эти ступени обходятся (рис. 3.8.2). Обращение превращения пировиноградной кислоты в фосфат енола пировиноградной кислоты осуществляется действием оксалилуксусной кислоты при участии ферментов пируваткарбоксилазы и фосфатенолпируваткарбоксилазы  [c.701]

    Образование фруктозо-6-фосфата из фруктозо-1,6-дифосфата осуществляется при действии фруктозодифосфатазы, образование глюкозы из глюкозо-б-фосфата катализируется глюкозо-6-фосфатазой. Остальные стадии синтеза протекают как обращенные реакции гликолиза за счет смещения равновесия (см. рис. 3.8.1). [c.701]

    Большое значение имеют эфиры неорганических кислот, в частности эфиры фосфорной кислоты — фосфаты. Они содержатся во всех растительных и животных организмах и представляют собой метаболически активные формы моносахаридов. К ним прежде всего относятся фосфаты О-глюкозы и О-фруктозы. 1-фосфат О-глюкозы получается при гидролизе гликогена (см. 12.3.1) с помощью фермента Лосфорилазы] 6-фосфат глюкозы образуется на первой стадии гликолиза, т. е. катаболизма глюкозы в организме. Далее 6-фосфат глюкозы изомеризуется в 6-фосфат 0-фруктозы, который фосфорилируется в свою очередь с помощью АТФ до 1,6-дифосфата 0-фруктозы. [c.398]

    Остановимся теперь на функциях последнего этапа пути. Как механизм, обеспечивающий полную деградацию углеводов, этот путь не получил универсального распространения, хотя есть эубактерии, осуществляющие разложение углеводов в аэробных условиях только по окислительному пентозофосфатному пути. У многих организмов, использующих пентозы в качестве субстратов брожения, окислительный пентозофосфатный путь служит для превращения пентоз в гексозы, которые затем сбраживаются в гликолитическом пути. Кроме того, выще мы упоминали о двух точках пересечения этого пути с гликолизом на этапах образования 3-ФГА и фруктозо-6-фосфата. Все это говорит о тесном контакте окислительного пентозофосфатного пути с гликолизом и о возможном переключении с одного пути на другой. Наконец, помимо пентоз, образующихся на начальных этапах пути, возникновение С4- и С7-сахаров в транскетолазной и трансальдолазной реакциях также представляет определенный интерес для клетки, так как эти сахара являются исходными субстратами для синтеза ряда важных клеточных метаболитов. [c.257]


    Уже на примере гликолиза видно, что последовательность реакций, составляющих ту или иную цепь или цикл, не обязательно является линейной. Наряду с необходимым для продолжения цепи глицеральдегид-З-фосфатом при гликолизе из фруктозо-1, б-дифосфата образуется дигидроксиацетоифосфат, который может вернуться в гликолитическую цепь только после изомеризации. Еще более [c.413]

    Если же клетка не нуждается в НАДФН, а ей нужен рибозо-5-фосфат для синтеза нуклеотидов, то промежуточные метаболиты гликолиза — фруктозо-б-фосфат и 3-фосфоглицериновый алвдегид — при действии ферментов неокислительной фазы пентозофосфатного пути могут превращаться в рибо-зо-5-фосфат Схема этого превращения приведена на рис. 18.10. [c.258]

    В переключении пентозного пути и гликолиза друг на друга роль регулятора выполняет эритрозо-4-фосфат. Если пентозофосфатов много, то эритро-зо-4-фосфат участвует в транскетолазной реакции, приводящей к образованию фруктозо-6-фосфата и его альдоизомера глюкозо-6-фосфата. Если же много гексозофосфатов, то эритрозо-4-фосфат вступает в трансальдолазную реакцию, пополняющую пул седогептулозо-7-фосфата. [c.259]

    Важную роль в регуляции глюконеогенеза играет другой регуляторный фермент — фруктозо-1,6-дифосфатаза, ингибитором которой является АМФ. Таким образом, при высоком отношении АТФ/АМФ происходит активация глюконеогенеза и ингибирование гликолиза, так как АТФ является ингибитором фермента фосфофруктокииазы, катализирующей обратную реакцию, т. е. образование из фруктозо-6-фосфата фруктозо-1,6-дифосфата. [c.276]

    Как известно, D-ксилулоза может включаться в пентозный цикл, способный переключаться на гликолиз с помощью образующихся ключевых веществ — фруктозо-6-фосфата и 3-фосфогли-церинового альдегида (интермедиаты в пентозном цикле). В итоге удалось добиться прямой конверсии ксилозы в этанол. Следовательно, клетки S.pombe, несущие ген ксилозоизомеразы, стали [c.397]

Рис. 15-3. Последовательность реакций, составляющих первую стадию гликолиза. Названия ферментов выделены красным. Цифры указывают положение атомов углерода. Глюкозоб-фосфат, фруктозо-б-фосфат и фруктозо-1,6-дифосфат представлены здесь для простоты в виде структур с открытой цепью, хотя в действительности они существуют в клетке в виде а-аномерных форм с замкнутым кольцом. Рис. 15-3. <a href="/info/2829">Последовательность реакций</a>, составляющих <a href="/info/1305122">первую стадию гликолиза</a>. <a href="/info/104800">Названия ферментов</a> выделены красным. <a href="/info/470383">Цифры указывают</a> положение атомов углерода. Глюкозоб-фосфат, фруктозо-б-фосфат и фруктозо-1,6-дифосфат представлены здесь для простоты в <a href="/info/477199">виде структур</a> с <a href="/info/563276">открытой цепью</a>, хотя в действительности они существуют в клетке в виде а-<a href="/info/1305019">аномерных форм</a> с замкнутым кольцом.
    Этой реакцией завершается первая стадия гликолиза. Таким образом, на первой стадии гликолиза молекула гексозы фосфорилируется по положениям 1 и 6, а затем расщепляется с образованием в конечном счете двух молекул глицеральдегид-З-фосфата. Ниже мы увидим, что и другие гексозы, например D-фруктоза, D-манноза и D-галактоза, также могут превращаться в глицеральдегид-З-фос-фат. [c.448]

    Затем фосфоманноизомераза катализирует изомеризацию D-маннозб-б-фосфа-та с образованием D-фруктозо-б-фосфа-та, который принадлежит к числу промежуточных продуктов гликолиза D-маннозо-б-фосфат D-фруктозо-б-фосфат. [c.461]

    Остатки глюкозы, из которых построены гликоген и крахмал, превращаются в глюкозо-6-фосфат под действием гликоген-фосфорилазы или фосфорилазы крахмала и фосфоглюкомутазы. Другие гексозы, а именно фруктоза, манноза и галактоза также фосфорилируются и превращаются в промежуточные продукты гликолиза. Вовлечение глюкозы в процесс гликолиза при участии фермента гексокиназы регулируется [c.471]

    Скорость гликолиза в нормальных условиях согласована со скоростью функционирования цикла лимонной кислоты в клетке до пирувата расщепляется ровно столько глюкозы, сколько необходимо для того, чтобы обеспечить цикл лимонной кислоты топливом , т. е. ацетильными группами ацетил-СоА. Ни пируват, ни лактат, ни ацетил-СоА обычно не накапливаются в аэробных клетках в больших количествах их концентрации поддерживаются на некоем постоянном уровне, соответствующем динамическому равновесию. Согласованность между скоростью гликолиза и скоростью функционирования цикла лимонной кислоты объясняется не только тем, что первый процесс ингибируется высокими концентрациями АТР и NADH, т.е. компонентами, общими для гликолитической и дыхательной стадий окисления глюкозы определенную роль в этой согласованности играет также и концентрация цитрата. Продукт первой стадии цикла лимонной кислоты-цитрат-является аллостерическим ингибитором фосфофруктокиназы, катализирующей в процессе гликолиза реакцию фосфорилирования фруктозо-6-фосфата (разд. 15.13 и рис. 15.15). [c.495]

    Для изучения токсического действия фторацетата был проведен эксперимент на интактном изолированном сердце крысы. После перфузии сердца 0,22 мМ фтораце-татом уменьшалось поглощение глюкозы и снижалась скорость гликолиза, а глюкозо-6-фосфат и фруктозо-6-фосфат накапливались. Концентрации всех промежуточных продуктов цикла лимонной кислоты были при этом ниже нормы, и только концентрация цитрата превышала норму в 10 раз. [c.506]

Рис. 17-29. Взаимозависимая регуляция гликолиза, окисления пирувата, цикла лимонной кислоты и окислительного фосфорилирования, определяемая относительными концентрациями АТР, ADP и АМР. Регуляторные воздействия, ингибирующие и стимулирующие, обозначены здесь красными полосками и стрелками. При высокой концентрации АТР и соответственно при низких концентрациях ADP и АМР скорости гликолиза, окисления пирувата, цикла лимонной кислоты и окислительного фосфорилирования минимальны. Если расходование АТР в клетке резко усиливается и, значит, концентрации ADP, АМР и Pj возрастают, то все эти четыре процесса ускоряются. Взаимосвязь гликолиза и цикла лимонной кислоты, осуществляемая через цитрат (она также показана на этой схеме), дополняет регуляторное действие аденилатной системы. Кроме того, при повышении концентраций NADH и ацетил-СоА подавляется процесс окисления пирувата до ацетил-СоА. ГбФ-глюкозо-б-фосфат ФбФ-фруктозо-б-фосфат ФДФ -фруктозодифосфат ГЗФ - глицеральдегид-З-фосфат ЗФГ - 3-фосфоглицерат 2ФГ-2-фосфоглицерат ФЕП-фос-фоенолпируват а-КГ-а-кетоглутарат. Рис. 17-29. Взаимозависимая <a href="/info/187144">регуляция гликолиза</a>, <a href="/info/102403">окисления пирувата</a>, <a href="/info/71266">цикла лимонной кислоты</a> и <a href="/info/38828">окислительного фосфорилирования</a>, определяемая <a href="/info/13570">относительными концентрациями</a> АТР, ADP и АМР. Регуляторные воздействия, ингибирующие и стимулирующие, обозначены здесь красными полосками и стрелками. При <a href="/info/330627">высокой концентрации</a> АТР и соответственно при <a href="/info/334174">низких концентрациях</a> ADP и АМР <a href="/info/98619">скорости гликолиза</a>, <a href="/info/102403">окисления пирувата</a>, <a href="/info/71266">цикла лимонной кислоты</a> и <a href="/info/38828">окислительного фосфорилирования</a> минимальны. Если расходование АТР в клетке резко усиливается и, значит, концентрации ADP, АМР и Pj возрастают, то все эти четыре <a href="/info/987728">процесса ускоряются</a>. Взаимосвязь гликолиза и <a href="/info/71266">цикла лимонной кислоты</a>, осуществляемая через цитрат (она также показана на этой схеме), дополняет <a href="/info/1392706">регуляторное действие</a> аденилатной системы. Кроме того, при <a href="/info/105394">повышении концентраций</a> NADH и ацетил-СоА подавляется <a href="/info/89524">процесс окисления</a> пирувата до ацетил-СоА. ГбФ-глюкозо-б-фосфат ФбФ-фруктозо-б-фосфат ФДФ -фруктозодифосфат ГЗФ - глицеральдегид-З-фосфат ЗФГ - 3-фосфоглицерат 2ФГ-2-фосфоглицерат ФЕП-фос-фоенолпируват а-КГ-а-кетоглутарат.
    Внимательный читатель, рассматривая пути гликолиза и глюконеогенеза, представленные на рис. 20-2, неизбежно должен задать себе один очень непростой вопрос. На этих противоположно направленных метаболических путях между глюкозой и пируватом имеются три пункта, в которых ферментативные реакции катаболического направления заменены в анаболическом пути другими, обходными реакциями. Фосфофруктокиназа, например, катализирует фосфорилирование фруктозо-6-фосфата за счет АТР, а в глюконеогенезе ей соответствует фруктозодифосфатаза, катализирующая обходную реакцию-гидролиз фруктозо-1,6-дифосфата, в результате которого и образуется фруктозо-6-фосфат. Запишем эти две противоположно направленные реакции  [c.611]

    Глюконеогенез ЭТО образование нового сахара из неуглеводных предшественников, среди которых наибольшее значение имеют пируват, лактат, промежуточные продукты цикла лимонной кислоты и многие аминокислоты. Подобно всем прочим биосинтетическим путям, ферментативный путь глюконеогенеза не идентичен соответствующему катаболическому пути, регулируется независимо от него и требует расхода химической энергии в форме АТР. Синтез глюкозы из пирувата происходит у позвоночных главным образом в печени и отчасти в почках. На этом биосинтетическом пути используются семь ферментов, участвующих в гликолизе они функционируют обратимо и присутствуют в большом избытке. Однако на гликолитическом пути, т. е. на пути вниз , имеются также три необратимые стадии, которые не могут использоваться в глюконеогенезе. В этих пунктах глюконеогенез идет в обход гликолитического пути, за счет других реакций, катализируемых другими ферментами. Первый обходный путь-это превращение пирувата в фосфоенолпируват через оксалоацетат второй-это дефосфорилирование фруктозо-1,6-дифосфата, катализируемое фруктозодифосфатазой, и, наконец, третий обходный путь-это дефосфорилирование глюкозо-6-фосфата, катализируемое глюкозо-6-фосфатазой. На каждую молекулу D-глюкозы, образующуюся из пирувата, расходуются концевые фосфатные группы четырех молекул АТР и двух молекул GTP. Регулируется глюконеогенез через две главные стадии 1) карбоксилирование пирувата, катализируемое пируваткарбоксилазой, которая активируется аллостерическим эффектором ацетил-СоА, и 2) дефосфорилирование фруктозо-1,6-дифосфата, катализируемое фруктозодифосфатазой, которая ингибируется АМР и активируется цитратом. По три атома углерода от каждо- [c.617]

    Обходный путь требуется для превращения пирувата в фос фоенолпируват. . . . . Второй обходный путь в ГЛЮ конеогенезе-это превращение фруктозо-1,6-дифосфата во фрук-тозо-6-фосфат. . . . . Третий обходный путь-это путь, ведущий от глюкозо-6-фосфата к свободной глюкозе. . . . Глюконеогенез требует значительных затрат энергии. . . Реципрокная регуляция глюконеогенеза и гликолиза. . , . Промежуточные продукты цикла лимонной кислоты являются также предшественниками глюкозы. ........ [c.729]


Смотреть страницы где упоминается термин Фруктозо фосфат в гликолизе: [c.464]    [c.482]    [c.405]    [c.342]    [c.550]    [c.554]    [c.555]    [c.700]    [c.348]    [c.124]    [c.395]    [c.558]    [c.262]    [c.106]    [c.444]    [c.467]   
Основы биохимии Т 1,2,3 (1985) -- [ c.416 , c.446 , c.447 , c.456 ]




ПОИСК





Смотрите так же термины и статьи:

Гликолиз

Фруктоза

Фруктоза Л Фруктоза

Фруктоза фосфаты

Фруктозаны



© 2025 chem21.info Реклама на сайте