Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород образования молекулы

    Д тлее, образование молекулы кислорода О2 описывается методом ВС как результат создания двух общих электронных нар  [c.142]

    На примере молекулы ЫОг рассмотрим более подробно строение трехатомных молекул угловой формы с л-связями. В образовании молекулы ЫОг принимают участие 25-, 2р -, 2ру- и 2р -орбитали атома азота, 2р -, 2ру- и 2р -ор-битали двух атомов кислорода. Из десяти атомных орбиталей образуются десять молекулярных орбиталей. Поскольку молекула N02, как и Н2О, имеет угловую форму, то о-орбитали N 2 аналогичны ст-орбиталям молекулы Н2О (с. 312). Это пять молекулярных орбиталей и и [c.362]


    Какое количество электронных пар принимает участие Б образовании молекул брома, кислорода, азота и воды  [c.68]

    Структура ассоциатов в различных соединениях может быть представлена различными образованиями. Так, молекулы жидких спиртов алканолов могут образовывать друг с другом водородные связи типа О-Н...О, С-Н...О, С-Н..,С. Водородная связь 0-Н...0 изучена в большей степени, чем связи С-Н...О, С-Н...С. Атом кислорода в молекуле ROH имеет две неподеленные пары электронов и может принимать участие не более, чем в двух связях 0-Н...0. В результате могут образоваться разветвленные и неразветвленные цепочные и кольцевые ассоциаты. [c.58]

    Образование перекисей из олефинов. Наличие двойной связи в молекуле углеводорода увеличивает ее восприимчивость к атаке кислорода. Внедрение кислорода в молекулу происходит через образование перекиси, что недостаточно понимали ранние исследователи [44]. Образование перекисей в качестве начальных продуктов окисления было экспериментально установлено на многих конкретных примерах. (Ряд таких примеров приведен в табл. 1). [c.286]

    Следует иметь в виду, что в водных растворах связывание избыточного кислорода и присоединение кислорода восстановителем происходят по-разному в кислой, нейтральной и щелочной средах. В кислых растворах избыток кислорода связывается ионами водорода с образованием молекул воды, а в нейтральных и щелочных — молекулами воды с образованием гидроксид-ионов, например  [c.167]

    В твердой воде (лед) атом кислорода каждой молекулы участвует в образовании двух водородных спязей с соседними молекулами воды согласно схеме [c.207]

    Четыре атома кислорода, высвобождающиеся при этом процессе, должны связаться в четыре молекулы воды. Для этого понадобятся восемь ионов водорода. Кроме того, два иона водорода необ.ходимы для образования молекулы H S. Следовательно, с ионом sor должны взаимодействовать десять нонов водорода  [c.267]

    В сильно сжатом или сжиженном кислороде обнаружены молекулы (02)2. Какие силы ответственны за образование этих молекул  [c.21]

    Из опубликованных в этой области данных известно, что процесс окисления углеводородов [82, 213, 236, 274] протекает как ряд последовательных реакций через образование перекис-ных соединений (теория Баха). Он сопровождается дегидрированием, отщеплением атомов углерода сырья и образованием некоторых кислородных соединений сложных эфиров, гидроксильных, карбонильных и карбоксильных групп в зависимости от химических особенностей сырья и условий процесса [52] По-видимому, внедрение кислорода в молекулы сырья вызывает специфические спиновые взаимодействия, которые выражаются в создании локальных полей [19]. [c.33]


    Помимо простых (одноатомных) ионов в соединениях могут образовываться комплексные (многоатомные) ионы. В состав комплексного иона входят атом металла или неметалла, а также несколько атомов кислорода, хлора, молекулы аммиака (NH3), гидроксидные ионы (ОН ) или другие химические группы. Так, сульфат-ион, SO , состоит из атома серы и четырех окружающих его атомов кислорода, занимающих вершины тетраэдра, в центре которого находится сера общий заряд комплексного иона равен — 2. Нитрат-ион, NO , содержит три атома кислорода, расположенных в вершинах равнобедренного треугольника, в центре которого находится атом азота общий заряд комплексного иона равен — 1. Ион аммония, NH4, имеет четыре атома водорода в вершинах тетраэдра, окружающего атом азота, и его заряд равен + 1. Все эти ионы рассматриваются как единые образования, поскольку они образуют соли точно таким же образом, как и обычные одноатомные ионы, и сохраняют свою индивидуальность во многих химических реакциях. Нитрат серебра, AgNOj, представляет собой соль, содержащую одинаковое число ионов Ag " и NOj. Сульфат аммония-это соль, в которой имеется вдвое больше ионов аммония, NH , чем сульфат-ионов, SOj она описывается химической формулой (NH4)2S04. Другие распространенные комплексные ионы указаны в табл. 1-5. [c.33]

    Обычно под термином окисление принято понимать процесс взаимодействия кислорода и молекул вещества с образованием кислородсодержащих продуктов. В процессе производства окисленных битумов значительная часть потребляемого кислорода пе фиксируется в получаемых технических битумах, а уходит с газообразными и жидкими продуктами окисления, так называемым отдувом . Иначе говоря, накопление кислородсодержащих продуктов в окисленном битуме не наблюдается [39—41]. [c.132]

    Таким образом, в конце прошлого столетия точка зрения, предполагающая, что пламенное сгорание углеводородов — это процесс непосредственного распада горючего на элементы с последующим их взаимодействием с кислородом, должна была вступить в противоречие с повседневным опытом химиков, наблюдавших внедрение кислорода в молекулу углеводорода без разрыва углеродного скелета. Первым отражением этого противоречия явились прогрессивные для того времени представления Армстронга [4], высказанные им еще в 1874 г. Он предположил, что промежуточные стадии пламенного сгорания углеводородов представляют собой преходящее образование неустойчивых гидроксилированных молекул, получающихся внедрением кислорода в исходную молекулу горючего. Такие окисленные образования способны при высокой температуре распадаться на стабильные кислородсодержащие промежуточные продукты, так что весь процесс может быть изображен как последовательное гидроксилирование углеводорода. [c.6]

    Уже в следующем 1952 г., публикуя результаты изучения холоднопламенного окисления гексана [72], Норриш усматривает причину возникновения холодного пламени в начальном накоплении следов алкилгидроперекиси, сгорание которой в кислороде приводит к получению большого количества свободных радикалов. Последние вовлекают исходный углеводород в интенсивное окисление с образованием высших альдегидов в качестве активных промежуточных продуктов. При этом происходит выделение тепла и повышение температуры среды. В результате, начиная с некоторого температурного предела, окисление протекает уже по верхнетемпературному механизму, т. е. с формальдегидом в качестве разветвляющего агента. В ходе воспламенения алкилгидроперекиси и последующей быстрой реакции окисления углеводорода образуются в качестве промежуточных лабильных образований алкоксильные радикалы и притом в таких количествах, которые делают возможным их взаимодействие с образованием молекул возбужденного формальдегида. [c.256]

    В главе VI — окисление—автор, излагая механизм реакции окисления парафиновых углеводородов с позиций перекисной теории, соверщенно не упоминает одного из основоположников перекисной теории— А. Н. Баха. Развитие исследований в области разработки перекисной теории автор приписывает немецким ученым Лангенбеку и Притцкову, опубликовавшим свои исследования в 1954 г., тогда как вопрос об образовании гидроперекисей как первичных продуктов присоединения кислорода к молекуле углеводорода значительно раньше был решен советскими исследователями. В выяснении сложного механизма реакции окисления углеводородов кислородом воздуха приоритет принадлежит советским ученым. Ряд гидроперекисей был выделен и описан К. И. Ивановым еще в 1949 г. Кроме того, -К- И. Иванов впервые показал, что вторичными реакциями при окислении углеводородов является не только их распад, но одновременно и дальнейшая пероксидация с образованием многоатомных гидроперекисей. [c.6]

    Как указывалось (см. рис. 50), молекула воды имеет угловую форму, что согласно теории валентных связен соответствует sp -гибридному состо шию атома кислорода. В молекуле HjO две sp -гибридные орбитали атома кислорода участвуют в образовании двух связей О — Н. На диух других 5/5 -гибридных орбиталях расположены две несвязывающие электронные пары (см. рис. 50). Валентный угол в молекуле воды НОН составляет 104,5°. [c.311]


Рис. ХПЫ. Схема анодного процесса ионизации алюминия, электродной реакции передачи кислорода иэ молекулы воды на оксидируемый металл и образования А12О3 <Н. Д. Томашов, М. Н. Тюкина, Ф. П. За-ливалов). Рис. ХПЫ. <a href="/info/581539">Схема анодного</a> <a href="/info/561037">процесса ионизации</a> алюминия, <a href="/info/71293">электродной реакции</a> <a href="/info/1450558">передачи кислорода</a> иэ <a href="/info/5256">молекулы воды</a> на оксидируемый металл и образования А12О3 <Н. Д. Томашов, М. Н. <a href="/info/854575">Тюкина</a>, Ф. П. За-ливалов).
    Обычная форма Р2О3 имеет молекулярную решетку, образованную молекулами Р40в. Эта форма легкоплавка (т. пл. 23,8 С, т. кип. 175,4°С), незначительно растворима в сероуглероде. Молекула Р Од состоит из четырех пирамид РО3, соединенных через атомы кислорода  [c.370]

    Таким образом (см. табл. 10), для хлора (VII) возможен только один способ объединения оксохлоратных тетраэдров, а именно—в димер с образованием молекулы С12О,. Сера (VI) образует как димер ЗзОГ, так и открытые (50з)оо и замкнутые (50з)з цепочки. Прн этом каждый оксосульфатный тетраэдр объединяется с соседними за счет двух своих вершин —двух мостиковых атомов кислорода. В соединениях фосфора [c.432]

    Например, дегидрирование этилового спирта, рогласно-тот риг мультиплетов, происходит на дублете, причем к одному ато му дублета притягиваются водородные атомы групп СНг и ОН а атом кислорода и углеродный атом группы СНг — к другому В результате происходит разрыв связей С—И и О—Н и обра зование связей Н—Н и С = 0 с образованием молекул уксус ного альдегида и водорода (атомы дублета на поверхности [c.343]

    Представление о направленности ковалентных связей позволяет объяснить взаимное расположение атомов в многоатомных молекулах. Так, ири образовании молекулы воды электронные облака двух неспаренных 2р-электронов атома кислорода перекрываются с 15-электронными облаками двух атомов водорода схема этого перекрывания изображена на рис, 36. Поскольку р-электронныа [c.134]

    Подобным же образом рассматривается с точки зрения метода МО образование молекул, состоящих из различных атомов. Так, на рис. 53 п[)едставлена энергетическая схема образования молекулы оксида углерода СО. Здесь на МО переходят четыре 2/7-электрона атома кислорода и два 2р-электрона атома углерода. Энергия 2р-электронов [c.149]

    Здесь в ходе процесса атомы азота лишаются атомов кислорода и связываются с атомами водорода. В щелочной среде это во шожно при участии молекул воды. Три молекулы воды понадобятся для связывания трех атомов кислорода и еш,е три молекулы воды —для образования молекулы ЫНз  [c.268]

    В образовании о-свнзей с атомами хлора и кислорода в молекуле ЗОСМ, уча ствуют три р мектрона атома серы, следовательно, молекула 80С12 имеет нира-мидальную -структуру. После обозначения о-связей и неподеленных нар атомов кислорода и хлора структура ЗОС имеет вид [c.56]

    Полярность молекул жидкой воды делает ее прекрасным растворителем для ионных кристаллов типа Na l. Вода способна растворять Na l и разъединять его противоположно заряженные ионы Na и С1", потому что необходимая для их разъединения энергия обеспечивается образованием гидратированных ионов (рис. 14-20). Каждый ион Na в растворе тоже окружен октаэдром отрицательных зарядов, но вместо ионов С1 их роль играют отрицательные полюса атомов кислорода в молекулах воды. Ионы С1 в растворе тоже гидратированы, но к ним обращены положительно заряженные концы молекул воды (атомы Н). Неполярный раство- [c.621]

    Газообразный кислород выделяется в атмосферу в качестве побочного продукта реакции. Энергия также запасается в результате образования молекул АТФ, которые вместе с НАДФ Н поставляют энергию для темновых реакций. [c.336]

    Водородная связь. Взаимодействие между молекулами может происходить благодаря наличию водородных связей. Эта связь обусловлена способностью атома водорода, непосредственно связанного в молекуле с атомом сильно электроотрицательного элемента (Р, О, N и в меньшей степени С1, 5 и др.), к образованию еще одной химической связи с подобным атомом другой молекулы. При этом возникает водородная связь. Например, молекулы карбамида, находящегося как в тетрагональной, так и в гексагональной кристаллической структуре, связаны между собой водородными связями за счет того, что атом кислорода одной молекулы карбамида образует связь с атомом водорода аминной группы соседней молекулы карбамида  [c.45]

    Рентгенографические исследования комплексов тиокарбамида с соединениями, различающимися длиной цепи, показали, что молекулы тиокарбамида расположены в комплексе ромбоэдрически [10, 24, 43], образуя псевдогексагональные ячейки. Больший размер атома серы в молекуле тиокарбамида по сравнению с атомом кислорода в молекуле карбамида способствует образованию канала большего диаметра. [c.205]

    При комнатной температуре и атмосферном давлении окисление N0 происходит мгновенно. В отлнчне от подавляющего большинства других реакций скорость данной реакции с повышением температуры не увеличивается, а уменьшается. Это обусловлено тем, что взаимодействуют с кислородом не молекулы N0, а димеры N2O2 (в приведенной реакции происходит взаимодействие двух молекул-NO с одной молекулой О2, при отсутствии димеров эта реакция идет с ничтожно малой скоростью, так как тройные столкновения молекул крайне редки). Образование NO2 при столкновении одной молекулы N0 с О2 невозможно, поскольку для процесса [c.405]

    Гораздо более общей реакцией является так называемая а л ь-дольная ко нденсация альдегидов, протекающая под действие.м небол-ьших количеств щелочи (бикарбонатов, карбонатов и ацетатов щелочных металлов, разбавленных растворов щелочей и алкоголятов) иногда реакция протекает в присутствии разбавленных кислот. Эта конденсация состоит в том, что один из атомов водорода перемещается от углеродного атома, находящегося рядом с альдегидной группой, к ато.му кислорода другой молекулы альдегида, причем обе молекулы альдегида соединяются друг с другом углеродной связью с образованием димерного продукта  [c.206]

    Радиационная стабилизация, являющаяся обращением фотодиссоциации в области предиссоциации, была, видимо, обнарупсснп при исследовании рекомбинации атомов кислорода при высоких температурах (2500—3000 К) в [428]. В этой работе для суммарной константы скорости образования молекулы Оз в основном электронном состоянии бы то по.71учепо иырп-жение [c.122]

    Металлические катализаторы в первом акте катализа (см. стр. 62 и рис. 38) служат, как правило, донорами электрона (отдают электрон веществу А), а в последнем акте — регенерации катализатор — акцецтируют электрон у вещества В. Так, платина в реакции окисления SO2 (или NHg) легко адсорбирует кислород, являясь донором электрона по схеме (а), затем адсорбированный кислород реагирует с налетающими из газовой фазы молекулами S0-2 (или NH3) с образованием активного комплекса по схеме (б) и далее при образовании молекулы SO3 (N0) на поверхности катализатора по схеме (в) происходит передача электрона платине, т. е. регенерация катализатора. [c.67]

    Нейтрализация осуществляется за счет экранирования заряда иона частью электронной плотности, которая оттягивается от атомов кислорода ближайших молекул воды. Но смещение 9лсктрои-И0Й плотности ближайших молекул воды создает ее дефицит на этих молекулах, который частично покрывается смещением электронной плотности от следующих молекул и т. д. Так, вследствие поляризации дальних молекул воды и нарушения их струк1урных соотношений происходит образование гидратной оболочки иона, распространяющейся на расстояние до десятых долей микромет-26 [c.26]

    Обычные представления относительно образования смолистых компонентов нефти сводятся к окислительной гипотезе. Несомненно, что нефть, находящаяся в контакте с атмосферой, теряет свои легкие составные части в результате чисто физического процесса. Кроме того, несомненно, протекают и химические процессы дегидрирования, а также внедрения кислорода в молекулы углеводородов, преимущественно высокомолекулярных. Технические методы получения асфальта из нефтяных остатков являются примером подобного процесса, правда, идущего при температурах порядка 250—300°. Окисление нефтяных дистиллятов при обыкновенной температуре также приводит к частичному образованию кислородных соединений, вначале перекисного, а в дальнейшем преимущественно кислого характера. Естественные выходы нефти на поверхность часто сопровождаются твердыми или полутвердыми массами, близкими по внешним признакам к асфальтовым веществам, хотя и не имеется ни одного анализа, который показал бы, что это внешнее сходство распространяется и на химическую близость к нефтяным смолам. [c.155]

    Наконец, образование метилового спирта по реакции 10 представляет собой внедрение атома кислорода в молекулу углеводорода. Такую возможность предполагают также Л. И. Авраменко и Р. В. Колесникова [8—10], изучавшие реакции атома кислорода с метаном, этаном, ацетальдегидом и др. Против подобного внедрения, однако, свидетельствуют опыты Цветаповича [И, 12], который также исследовал реакции атома кислорода с этиленом и ацетальдегидом, по не нашел при этом продуктов внедрения. Нам эта реакция представляется сомнительной. [c.280]


Смотреть страницы где упоминается термин Кислород образования молекулы: [c.27]    [c.59]    [c.118]    [c.619]    [c.353]    [c.197]    [c.42]    [c.54]    [c.355]    [c.87]    [c.68]    [c.274]    [c.37]    [c.54]    [c.29]    [c.63]   
Лекции по общему курсу химии ( том 1 ) (1962) -- [ c.71 , c.72 ]

Лекции по общему курсу химии Том 1 (1962) -- [ c.71 , c.72 ]




ПОИСК





Смотрите так же термины и статьи:

Молекула образования

молекулами кислорода



© 2025 chem21.info Реклама на сайте