Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ассоциации константа реакции между ионами

    На основании давно известных точных данных по константам ассоциации, полученных из других работ по кинетике [9], очевидно, что в реакциях между ионами следует учитывать роль ионных пар. Равным образом очевидно, что ири количественных расчетах, связанных с допущением роли ионных пар, концепция коэффициентов активности бесспорно должна быть сохранена. Идея о роли ионных пар в ионных реакциях может быть в настоящее время принята как дополняющая, а не заменяющая идею о роли коэффициентов активности. [c.272]


    Кинетически ассоциация ионных пар проявляется [30—33] в дробном порядке реакции по активным центрам и в резком снижении скорости реакции, поскольку ассоциаты, образованные ионными парами, практически не способны реагировать с соединениями с двойной связью. Если равновесие (5) между ионными парами и их ассоциатами сдвинуто в сторону последних (константа равновесия К велика), то наблюдаемая константа скорости выражается [34] формулой [c.262]

    Обратимые реакции между макромолекулами и молекулами или ионами низкомолекулярных веществ подчиняются обычным законам химического равновесия. Поскольку в макромолекуле число реагирующих участков может быть велико, для описания реакции необходимо большое число констант равновесия однако это не вызывает принципиальных изменений. Таким образом, соединение макромолекулы Р с меньшей молекулой или ионом А может быть описано при помощи п констант ассоциации  [c.595]

    Добавки отрицательных ионов оказывают сильное каталитическое действие, вызывая изменение закона скорости. Скорость в этом случае оказывается зависящей либо от первой степени концентрации добавленного иона, либо от квадрата его концентрации. Константы равновесия для ассоциации большинства этих ионов с Ре " известны, и можно считать, что реакция идет через активированный комплекс, образующийся при взаимодействии Ре " и комплекса Ре . Следует учитывать, что закон скорости дает сведения только о числе комплексообразующих ионов, входящих в состав активированного комплекса, но не о том, каким образом они соединены между собой. Некоторые значения констант скоростей, полученных таким образом, приведены в табл. XVI.2. [c.505]

    Ag( N)2, причем предполагается, что она почти не влияет на равновесие. На кривой зависимости концентрации от расстояния от поверхности электрода в точке б должен наблюдаться некоторый излом, величина которого зависит от значения константы равновесия К. Чем меньше величины К, тем резче становится излом в точке б. Так как вследствие недостатка ионов СК в непосредственной близости от поверхности электрода реакция ассоциации почти не идет, т. е. почти не образуются ионы Ag( N)2, которые должны диффундировать от поверхности, то поэтому градиент концентрации их в этой области равен нулю, а концентрация этих комплексных ионов постоянна. Однако, с другой стороны, концентрация ионов Ag(GN)2 в области от = О до = б максимальна, так как при = б из Ag+ и N образуется [по ур. (2. 127)] Ag( N)2, который диффундирует через слой, расположенный между I = б и 1 = 6. Таким образом, в слое О < I < < б ионы Ag( N)2 накапливаются в таком количестве, что появляется значительный градиент концентрации при б << < б. [c.206]


    Изучены реакции перехода электрона с Ыа на полимеры и образования полирадикал-анионов для поли-4-винилдифенила, аценафтилена, а- и 3-винилнафталина и 9-винилантрацена. В первых двух случаях с течением времени происходит расщепление основной цепи, по-видимому, по связям между соседними ион-радикальными звеньями, причем полирадикал-анион переходит в полимерные анионы Оказалось, что истинная константа скорости полимеризации стирола под действием живого полимера в тетрагидрофуране не зависит от концентрации инициатора, но снижается с увеличением концентрации живых активных центров. Объяснения этому пока не найдено о . Предполагается, что это определяется либо наличием ассоциации активных центров, либо зависимостью их активности от свойств раствора, например от ионной силы. Энергия активации процесса равна 1 ккал/моль, энтропия активации на 14 энтр. ед. меньше, чем при радикальной полимеризации. Это объясняется иммобилизацией противоиона в переходном состоянии ° . [c.130]

    К сожалению, точно оценить коэффициенты активности и соответственно активность) сложно, тем более для водных растворов с высокой ионной силой. Поэтому на практике пренебрегают коэффициентами активности, а также различием между /С и /(Р. При количественном описании жидкость-жидкостного распределения часто пользуются не константой распределения, а коэффициентом распределения О [см. уравнение (П)], поскольку в хроматографии, как и в жидкостной экстракции, растворенные вещества могут находиться в нескольких химических формах. Если в системе присутствуют различные частицы Вь Вг,. .., Вп, которые образуются за счет конкурирующих реакций (комплексообразование, ассоциация или диссоциация компонента в одной из фаз и т. п.), то коэффициент распределения рассчитывают по формуле [c.50]

    Растворитель может оказывать очень сильное влияние на константы скорости реакций между ионами и органическими молекулами, будь то нуклеофилы или основания. Например,, при переходе от воды к ацетону константа скорости второго порядка реакции между хлорид-ионом и метилиодидом возрастает приблизительно в 10 раз. Другой пример — рацемизация оптически активного 2-метил-З-фенилпропионитрила под действием метоксид-иона. Скорость этой реакции в диметилсульфоксиде в 10 раз больше, чем в метаноле [8]. Эти эффекты ускорения могут быть отчасти обусловлены влиянием диэлектрической проницаемости среды, однако в основном они определяются специфическим действием растворителя. Как указывалось выше, наибольшие различия замечены между протонными и апротонными растворителями. Переход от протонного растворителя к апротонному может приводить к последствиям двоякого рода с одной стороны, к смещению равновесия между ионными парами и свободными ионами, а с другой — к изменению специфической сольватации ионов, которая обычно является более сильной в среде протонного растворителя. Важнуку роль процесса ассоциации ионов в определении кажущейся нуклеофильности можно проиллюстрировать на примере галогенидов лития и тетра- -бутиламмония. В реакции с -бутил-п-бромбензолсульфонатом в ацетоновом растворе эти соли соотносятся по реакционной способности следующим образом (все соли берутся в концентрации 0,04 моль/л)  [c.49]

    Существует много других способов определения констант ассоциации ионов, например полярографический, спектрометрический и сиектрофотометрический методы. Однако потребовалось бы чрезмерно много места для описания этих методов, а это не обязательно для иллюстрации факта ассоциации ионов и зависимости ассоциации от природы растворителя, температуры и концентраций это не обязательно также, чтобы показать необходимость получения таких сведений для интерпретации данных по скоростям реакций между ионами в растворе. [c.297]

    Олсон и Симонсон [111] при обсуждении диаграммы Ливингстона и некоторых собственных данных по двум реакциям, идущим с участием иона бромпентаммиаката кобальта, пришли к выводу, что влияние добавок инертных солей на скорости реакций между ионами одного и того же знака определяется почти исключительно концентрацией и природой ионов добавленной соли, которые отличаются по знаку от реагирующих ионов , и скорость не зависит от ионной силы раствора . Влияние солей можно количественно объяснить на основе констант ассоциации ионов и частных констант скорости для ассоциированных и неассоциированных реагентов. Введение коэффициентов активности не предстлвляется необходимым . Работа Дэвиса [37] полностью опровергает оба утверждения, выделенные нами курсивом. Олсону и Симонсону явно не удалось показать, что влияние ионных пар дополняет, а не полностью заменяет влияние активностей ионов. [c.164]

    Однако влияние этих равновесий на силу кислот сказывается только в концентрированных растворах. В разбавленных растворах, в которых определяются термодинамические константы, реакция (IV) обычно проходит до конца, а реакция (V) практически еще не начинается. Напрймер, в очень концентрированных водных растворах молекулы азотной кислоты ассоциированы, при добавлении воды ассоциаты уступают место продуктам взаимодействия азотной кислоты с водой состава HN0з H20 и НКОз-ЗНзО одновременно изменяется степень ассоциации воды. При дальнейшем разбавлении эти продукты диссоциируют па сольватированные ионы. Если при этом диэлектрическая проницаемость раствора невелика (смеси диоксана с водой), то образуются ионные молекулы — ионные двойники. Наличие таких ионных двойников наряду с молекулами обнаруживается на основании различия между константами диссоциации, определенными из электрохимических и оптических данных. Ионные молекулы, как и обычные, не переносят тока, но их оптические свойства близки к свойствам свободных ионов. [c.295]


    Константа скорости диффузионно контролируемой реакции ассоциации обычно имеет порядок 10 л-моль -сек- . Поэтому для ионных пар, имеющих константу диссоциации около 10 —10 моль , константа скорости диссоциации должна быть порядка 10 —10 сек . Следовательно, равновесие между ионными парами и свободными ионами устанавливается быстро, соответствующее время релаксации оказывается меньше 10" сек. В большинстве систем, полимеризующихся по ионному механизму, рост цепи происходит медленнее, чем диссоциация ионных пар, поэтому скорость процессов ассоциации — диссоциации обычно не влияет на кинетику исследуемой реакции, и ее течение определяется равновесием между различными типами растущих частиц. [c.268]

    Деление электролитов на сильные и слабгле условно. Совре-мен11ые исследования указывают на существование в растворах электролитов не только простых ионов и нейтральных молекул, но и различных ассоциатов ионов, включающих в себя молекулы растворителя, например в водном растворе вместо простой диссоциации вида АВ А + В рассматривается равновесие исходных молекул АВ с их сольватированной формой (АВ)с АВ + Н2О (АВ)с, диссоциация сольвата на ионы (АВ)с= = А(+ + Вг, ассоциация сольватированных ионов А и ВГ с образованием ионных двойников Ас 4- ВГ (А ВГ) и др. Каждая из подобных реакций характеризуется своей константой равновесия. Кроме того, учитывается возможность существования различных сил, действующих между частицами электролита и между этими частицами и молекулами растворителя. Таким образом, представления о слабых и сильных электролитах, когда совсем пренебрегают силами взаимодействия ионов или их рекомбинацией и ассоциацией, а также не учитывают остальные возможные процессы, являются упрощенными и годятся лишь для приближенного описания. Несмотря на это, понятия сильного и слабого электролита во многих случаях оказываются достаточными. [c.204]

    Константы скорости ка, измеренные Эйгеном с сотрудниками для некоторых реакций ассоциации с участием ионов Н+ и ОН , в которых лимитирующей стадией является диффузия, приведены в табл. 10.4. Вывод соотношения между этими константами скорости и экспериментально определяемыми временами релаксации дан в следующем разделе. [c.315]

    Таким образом, процедура качественного химического анализа представляет собой последовательное отделение анаштических групп с дальнейшим откры-таем входящих в них ионов систематическим или дробным методами. В ходе выполнения анализа как систематическим, так и дробным методами аналитик управляет поведением ионов в растворе, прежде всего их концентрациями. Такое управление возможно на основе равновесных реакций путем смещения равновесий. В распоряжении аналитика два типа рав1ювеспых процессов — гомогенные и гетерогенные равновесия. Гомогенные равновесия — это диссоциация — ассоциация, окисление — восстановление, гидролиз, нейтрализация, комплексообразование. Количественное описание этих равновесий основано на законе действующих масс и уравнении Нернста для окислительновосстановительного потенциала системы. К гетероген-ныи равновесиям относятся, прежде всего, растворение и осаждение осадков, экстракционное распределение между двумя жидкими фазами и хроматографические процессы. Расчеты положения гетерогенного равновесия возможны на основе констант межфазных распределений, в первую очередь правила произведения растворимости. [c.72]

    Сходство между катализом ионами металлов и кислотным катализом во многих реакциях оксианионов, в которых протонируется один или несколько атомов кислорода переходного состояния [122], ставит вопрос о механизме взаимодействия катиона с переходным состоянием. Заряд катиона имеет важное значение, поскольку он может быть, например, очень мал по сравнению с высоким зарядом переходного состояния. Однако в пределах ионов данного типа заряда эффективность их возрастает в порядке усиления мягкости льюисов-ской кислотности [236, 272], как и должно быть для ассоциации катионов с объемистым анионом, заряд которого сильно размазан. Такая последовательность выполняется в ряду аналогичных реакций, протекающих через объемистое анионное переходное состояние с рассредоточенным зарядом. Эта последовательность хорошо согласуется с принципами, которые определяют ассоциацию ионов в протонных растворителях (гл. 3, разд. З.Б). Только когда исходными реагентами являются жесткие основания типа ОН", F или R O жесткокислотные катионы становятся более эффективными. Эффективность их меняется в том же ряду, что и константы образования ионных пар или ионных комплексов с этими основаниями, например, для M2+R( 02)2- [283] (гл. 3, разд. З.Б). Так, нитраты щелочных [c.150]

    В настоящее время считают, что константы Свейна п и константы Эдвардса или Р в действительности являются переменными величинами. Соотношение нуклеофильных свойств в ряду галогенид-ионов в реакциях замещения у р -углеродного атома зависит от природы растворителя. Константы скоростей реакций 5дг2-замещения между галогенидами лития и алкилга-логенидами в ацетоне убывают в следующем порядке 1 >Вг > >01 (также располагаются величины ). Однако при использовании более легко диссоциирующих солей тетрабутиламмо-нийгалогеиидов в ацетоне происходит обращение ряда (С1 >Вг >1 ) [97]. Кроме того, если учесть ассоциацию с галогенид-ионами, константы которой известны, то для свободного галогенид-иона в вышеупомянутых реакциях галогени-дов лития в ацетоне фактически сохраняется та же последовательность. Нуклеофильные свойства галогенид-ионов в воде убывают в ряду 1">Вг">С1 , как и следовало ожидать, исходя из представлений о большей гидратации малых ионов. При увеличении размера иона поляризуемость растет, но степень сольватации уменьшается. Так, Паркер [98] показал, что порядок изменения констант скоростей анионной атаки, протекающей по типу 5х2-замещения, меняется пр1 переходе от протонных к биполярным апротонным растворителям, в которых он имеет следующий вид Р >СГ, N >Bг , N3 > Г > 5СЫ > [Пикрат] . [c.53]

    Если рассматривать сольватацию как дипольное взаимодействие ионов и молекул растворителя (т. е. игнорировать координационную природу процесса сольватации), то образование ионной пары можно даже описать количественно. В первом приближении зависимость константы равновесия К образования ионной пары можно представить, используя электростатическую модель, с помощью уравнения К = = А (1/е) (z" z /r% где е - диэлектрическая проницаемость растворителя, 2" , z — заряды принимающих участие в реакции ионов, г — расстояние между их центрами, А — коэффициент пропорциональности. Это уравнение убедительно показывает, что реакции ассоциации благоприятствует низкая дголектрическая проницаемость растворителя, высокие заряды растворенных ионов и малые радиусы последних. [c.18]

    Для дальнейшего выяснения природы тех факторов, которые определяют прочность и специфичнось данного комплекса, рассмотрим ряды производных оснований, которые слегка отличаются от исходных оснований. Такие ряды для А и U приведены на рис. 6.10. Вдоль стрелок, соответствующих взаимодействию между 9-этиладенином и 1-циклогексилурацилом, а также между их производными, и рядом с каждым их этих производных указаны соответствующие константы ассоциации (в М ). Эти данные позволяют понять детали реакции образования пар. Например, неспособность 3-метилурацила связываться с аденином обусловлена, по-видимому, невозможностью образования циклического димера. Большое значение константы ассоциации 5-бромурацила с аденином объясняется, вероятно, существенным увеличением кислотности NH-группы, вызванным оттягиваним электрона атомом брома эффект увеличения кислотности NH-группы должен с избытком компенсировать противоположное влияние уменьшения основности кислорода. (Увеличение кислотности NH-группы означает, что водород слабее притягивается к азоту и, следовательно, легче вступает во взаимодействие с другой электроотрицательной группой. Уменьшение основности кислорода означает понижение его сродства к иону водорода.) Можете ли вы обосновать некоторые другие из приведенных результатов  [c.302]


Смотреть страницы где упоминается термин Ассоциации константа реакции между ионами: [c.272]    [c.163]    [c.152]    [c.129]    [c.204]    [c.223]    [c.111]    [c.150]    [c.254]    [c.296]   
Влияние растворителя на скорость и механизм химических реакций (1968) -- [ c.271 ]




ПОИСК





Смотрите так же термины и статьи:

Ассоциация

Ассоциация ионов

Ассоциация ионов, константа

Ассоциация между ионами

Константа ионов

Константы ассоциации

Реакции ассоциации

Реакции между ионами

Реакция константа

Реакция между СО



© 2025 chem21.info Реклама на сайте