Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электродвижущие силы в неводных растворах

    Электродвижущие силы неводных растворах [c.223]

    При исследовании влияния растворителей на свойства электролитов — на их растворимость, силу, кислотность, а также на электродвижущие силы — широко использовался метод единых нулевых коэффициентов активности уо-Эти коэффициенты, в отличие от обычных, отнесены к состоянию ионов или молекул в бесконечно разбавленном водном растворе и определяются работой переноса ионов или молекул из бесконечно разбавленного неводного раствора в воду. [c.6]


    Из прямых методов определения коэффициентов активности чаще всего применяют метод измерения электродвижущих сил цепей без переноса. Таким путем определены коэффициенты активности HG1 во многих неводных растворителях и в их смесях с водой (см. Приложение 5), коэффициенты активности многих галогенидов щелочных металлов (см. Приложение 6). Коэффициенты активности хлористого лития в амиловом спирте определены, кроме того, на основании коэффициентов распределения. Криоскопический метод широко применялся для определения коэффициентов активности солей в формамиде и в других растворителях, использовался также и эбулиоскопический метод. Затруднения в применении этих методов в неводных растворах, особенно в растворителях с низкой диэлектрической проницаемостью, связаны обычно с трудностями в экстраполяции свойств, например электродвижущих сил, к бесконечно разбавленному состоянию. Это объ- [c.62]

    Автором совместно с В. В. Александровым был разработан способ определения констант обмена на основании изучения изменения электродвижущих сил цепей без переноса в неводных растворах при добавке небольших количеств воды. Изменение электродвижущей силы под влиянием Добавок воды определяется выражением  [c.201]

    Величина электродвижущей силы тесно связана с состоянием электролитов в растворах. Поэтому измерения э. д. с. широко применяются при исследовании многих свойств сильных и особенно слабых электролитов при определении констант диссоциации, констант гидролиза, ионного произведения среды, буферной емкости и т. д. Большое значение имеет измерение э. д. с. для определения pH. В тесной связи с изучением электродвижущих сил находятся вопросы стандартизации pH в водных и особенна в неводных растворах. Широкое применение имеет измерение электродвижущих сил в аналитической химии при потенциометрическом и полярографическом анализе и т. д. [c.378]

    Все перечисленные выше методы не позволяют однозначно оценить кислотность неводных растворов в единой шкале. Вопрос об этой шкале может быть решен только на основании данных о величинах химической энергии сольватации протонов в различных растворителях. В настоящее время эти данные получены на основании подсчетов сумм и разностей химических энергий сольватации ионов в неводных растворах из данных об электродвижущих силах цепей без переноса и с переносом в неводных растворах. Путем экстраполяции величин суммарной энергии сольватации ионов водорода и ионов галогенов (ионы галогеноводородных кислот) и разностей энергий сольватации ионов водорода и ионов щелочных металлов, как было сказано в гл. IV, была определена энергия сольватации протона и других ионов в различных растворителях. [c.419]


    В этой главе мы рассмотрим, как зависит электродвижущая сила (з. д. с.) цепей с переносом и без переноса от свойств растворителя, концентрации и свойств растворенного электролита. Мы уже касались этих вопросов во второй главе при рассмотрении методов определения единых нулевых коэффициентов активности То и концентрационных коэффициентов активности т - Величина электродвижущей силы тесно связана с состоянием - электролитов в растворах. Поэтому измерения э. д. с. широко применяются при исследовании многих свойств сильных и особенно слабых электролитов при определении констант диссоциации, констант гидролиза, ионного произведения среды, буферной емкости и т. д. Большое значение имеет измерение э. д. с. для определения pH. В тесной связи с изучением электродвижущих сил находятся вопросы стандартизации pH в водных и особенно в неводных растворах. Широкое применение имеег измерение электродвижущих сил в аналитической химии цpJ потенциометрическом и полярографическом анализе и т, д. [c.702]

    Автором совместно с В. В. Александровым был разработан способ определения констант обмена на основании изучения изменения электродвижущих сил цепей без переноса в неводных растворах при добавке не- [c.228]

    Первыми же исследователями электродвижущих сил в неводных растворах было установлено, что и в этом случае возникают устойчивые электродные потенциалы и что для этих растворов применимо, в частности, уравнение концентрационных элементов  [c.223]

    Вознесенский пришел к выводу, что величина электродвижущей силы жидких цепей обусловливается характером распределения электролитов между фазами, причем другие электролиты, присутствующие в цепи, тоже влияют на это распределение. Из ряда электролитов с одним общим анионом заряжает неводную фазу электролит, который в ней больше растворим. [c.240]

    А. И. Бродский [32] в своих работах по неводным растворам установил, что электродвижущие силы цепей, составленных из электродов в растворах солей в различных растворителях, зависят от растворимости этих солей, и дал соответствующее уравнение для вычисления потенциалов различных электродов в различных растворителях. [c.16]

    Есть три метода определения коэффициентов активности метод, основанный на измерении электродвижущих сил цепей без переноса бесконечно разбавленных растворах в различных растворителях метод, основанный ыа определении различия давления нара растворенного электролита метод, основанный на определении растворимости в различных растворителях (см. гл. I). В настоящее время еще мало данных о величинах нормальных потенциалов цепей в неводных растворах. В работах автора совместно с Е. Ф. Ивановой были измерены электродвижущие силы ряда цепей, содержащих галоидные соли щелочных металлов в спиртах. Было показано, что величины Ig 7о исследованных солей линейно зависят от 1/е (рис. 46). Этот результат кажется до некоторой степени неожиданным, так как теоретически выведенное уравнение (IV,60) o toiit из двучлена, первый член которого [c.187]

    Гальванические элементы имеют разное назначение. Так, некоторые из них применяют в качестве источников постоянного тока, например, элементы Якоби —Даниэля, Лекланше, аккумуляторы. С другой стороны, изучение электродвижущей силы (э. д. с.) гальванических элементов (метод э. д. с.) широко используют во многих физико-химических исследованиях. Так, по Э.Д.С. гальванического элемента можно определить изменение энергии Гиббса, происходящее в результате реакции, протекающей в элементе, а также соответствующие изменения энтропии и энтальпии. Метод э. д. с. также широко применяют при исследовании свойств растворов электролитов, например, при определении коэффициентов активности, констант протолитической диссоциации, pH водных и неводных растворов, в потенциометрическом и полярографическом анализе и т. п. [c.478]

    Конец титрования можно определять визуально по изменению окраски или потенциометрически. Если применяется каломельный электрод сравнения, то удобнее заменить водный раствор хлорида калия (в солевом мостике на раствор перхлората лития в уксусной кислоте ИР для титрования в кислых (растворителях и на раствор хлорида калия в метаноле для титрования в основных растворителях. Следует помнить, что некоторые обычно иопользуемые индикаторы (например, кристаллический фиолетовый) (подвергаются постепенному изменению окраски, поэтому (при оценке (пригодности метода неводного титрования для конкретного случая необходимо проследить за тем, чтобы при потенциометрическом титровании вещества изменение окраски в конечной точке титрования соответствовало максимальной величине АЕ1АУ (где Е — электродвижущая сила, а V — объем титранта). [c.151]


    Свойства соляной кислоты в водных и неводных растворах, а также в смешанных водно-неводных растворителях были исследованы более подробно, чем свойства любого другого электролита, и они могут служить иллюстрацией основных свойств ионных растворов для того случая, когда отсутствуют затруднения, связанные с наличием ионов с зарядом больше единицы. В начале данной главы будет рассмотрен вопрос об определении степени диссоциации этой кислоты в средах с различной диэлектрической постоянной на основании данных об электропроводности. Затем будут подробно описаны свойства соляной кислотц на основании данных об электродвижущей силе элемента [c.311]

    Автор с рядом сотрудников систематически занимался определением величины Igfo на основании исследования электродвижущих сил цепей без переноса и растворимости солей в неводных растворах. Однако и в настоящее время еще мало данны.х о величинах д нормальных потенциалов цепей в неводных растворах. В работах автора совместно с Е. Ф. Ивановой были измерены электродвижущие силы ряда цепей, содержащих галоидные соли щелочных металлов в спиртах. Было показано, что величины Ig исследованных солей как функция от I/O дают, как правило, линейную зависимость с различным углом [c.357]

    Литературный материал по найденньш калориметрическими методами характеристикам температурной зависимости L, и L небогат. Имевшиеся до сих пор немногочисленные данные можно найти, например, в монографии Харнеда и Оуэна [4]. Однако результаты в больп(инстве случаев получены прп сочетании калориметрических измерений, метода электродвижущих сил и изучения повы-шения температур кипения. Естественно, что в итоге погрешность конечных значений довольно велика. Кроме того, обычно приводятс> только относительные энтальпии раствора в целом (L), т. е. фактически интегральные теплоты разведения, или о. п. м. энтальпии электролита (/jg). 1емпературные зависимости этих величин ъ практически совсем не охарактеризованы. Наши политермические измерения позволяют охарактеризовать зависимости = / (Г) для типичных водных и некоторых неводных электролитных растворов (см. Приложения). [c.188]

    Книга предназначается в качестве учебника для студентов химико-технологических вузов. В ней последовательно изложены основные положения теоретической электрохимии —прохождение тока через растворы электролитов, теория сильных электролитов И ее применения, явления сольватации ионов, теория возникновения электродвижущих сил, теория электро-каниллярных явлений и электродных процессов при выделении металлов. Уделено также внимание некоторым особым случаям электролиза — растворению металлов на аноде, образованию сплавов, электролизу с наложением переменного тока, электролизу неводных растворов и расплавов. Отдельные главы посвящены основам теории аккумуляторов и электрохимической коррозии. В заключительной главе учебника рассматриваются теоретические основы некоторых электрохимических процессов, нашедших применение в промышленности. [c.2]

    В. А. Кистяковский и Н. А. Изгарыщев занимались изучением коррозии металлов. Известна пленочная теория коррозии и пассивного состояния металлов В. А. Кистяковского. Н. А. Из-гарышев открыл явление пассивности некоторых металлов в неводных растворах электролитов, которое объяснено им с точки зрения теории пассивности В. А. Кистяковского. Н. А. Изга рышев продолжает свои работы, связанные с электродвижущими силами гальванических элементов, поляризацией и перенапряжением. [c.8]

    Влияние растворителя на электродвижущие силы К Осмотическая теория Нернста в ее первоначальном виде ничего не говорит о влиянии растворителя на электродные потенциалы я на электродвижущие силы. Необходимость такого влияния может быть однако доказана термодинамически. Это также следует из того, что мерило электродного потенциала — электролитическая упругость растворения—является мерой стремления ионов переходить в раствор, которое должно зависеть от обеих фаз не только от металла, но и от растворителя. Разбивание электродного потенциала на два слагаемых ео = е2- - о> сделанное впервые Л. В. Писаржевским (см. выше 206), также приводит к выводу, что если е зависит лишь от рода металла, то вд зависит также и от растворителя даже в растворах с одинаковой активностью ионов. Опытные данные приводили к прр тиворечивым результатам, так как в неводных растворах боль шей частью неизвестны ни диффузионные потенциалы, ни степени диссоциации, ни активности. Только более новые исследования, в которых эти факторы были учтены, показали с несомненностью влияние растворителя на электродные потенциалы е и на Е. [c.392]

    В системах, содержаишх равновесные растворы, наблюдаемая электродвижущая сила, измеренная с помощью, например, потенциометра, определяющаяся молярными или парциальными молярными свободными энергиями веществ, участвующих в равновесии, оказывается (см, гл- VI) связанной определенным образом с их активностями. Наоборот, связь между активностью и концентрациями не может быть установлена термодинамически и должна быть определена хШическим анализом равновесной системы. В некоторых простых случаях можно обойтись без химического анализа и выразить активности непосредственно через концентрации. Множитель, связывающий концентрацию компонента с его активностью, называют. коэфициентом активности . Численное значение коэфициента активности будет зависеть от применяемых единиц концентрации и от выбора стандартного состояния. Для неводных растворов стандартные состояния растворенного вещества и растворителя выбираются обычно так, чтобы в бесконечно разбавленном растворе активность каждого компонента становилась равной его молярной доле, а коэфициент активности — единице. Удобной мерой активности растворителя, создающего над раствором измеримое давление пара, является отношение этого давления к давлению пара чистого растворителя. [c.71]

    Методы на основе измерения электродвижущих сил щироко используются при изучении химических равновесий в водных растворах, однако в случае неводных растворителей они имеют ограниченную применимость. Трудно построить измерительную ячейку, имеющую малый и легко воспроизводимый диффузионный потенщ1ал и не имеющую промежуточного электролита. Стеклянный электрод, щироко используемый для водных растворов, для большинства неводных растворов непригоден, а в ряде случаев дает очень низкую точность. Анализ данных, полученных с его помощью, затруднен вследствие пределов шкал кислотности, используемых в таких системах. Ион-селективные и жидкостные мембранные электроды тоже непригодны для неводных растворов. [c.252]

    При построении графика зависимости э. д. с., определенной на подходящем потенциометре, от объема израсходованного стандартного раствора обычно, хотя и не всегда, получают S-образную кривую титрования, причем точка ее перегиба соответствует точке эквивалентности. Потенциометрические измерения как в водной, так и в неводных средах производятся одинаковым способом при помощи одних и тех же приборов. Отличие состоит только в составе солевого мостика, устанавливаемого между электродом и исследуе-дп,1м раствором, а при титровании в инертных растворителях имеются различия в способах экранирования и заземления сосуда, в котором производится титрование. При проведении кис.потно-основного титрования потенциал индикаторного электрода, погруженного в исследуемый раствор, зависит от активности ионов водорода в растворе. Электродвижущая сила определяется трубчатым потенциометром с болыпим внутренним сопротивлением. [c.161]


Смотреть страницы где упоминается термин Электродвижущие силы в неводных растворах: [c.216]    [c.224]    [c.192]    [c.189]    [c.164]   
Смотреть главы в:

Курс теоретической электрохимии -> Электродвижущие силы в неводных растворах


Курс теоретической электрохимии (1951) -- [ c.223 ]




ПОИСК





Смотрите так же термины и статьи:

Растворы неводные

Электродвижущая сила ЭДС



© 2025 chem21.info Реклама на сайте