Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводы Хеуорса

    Выше мы пользовались проекцией Фишера. Она точно отражает относительную конфигурацию асимметрических центров, но ничего не говорит (хун<е того, говорит весьма искаженно) об истинном расположении атомов в пространстве. И уже совсем неудобной становится при изображении циклических структур. Отнюдь не случайно формулы 17 и 18 имеют такой уродливый вид. Поэтому Хеуорс, один из классиков химии углеводов (который явно много размышлял о своем предмете), предложил повсеместно применяемые и по сей день так называемые перспективные формулы сахаров. [c.13]


    Если название углевода должно точно отражать особенности его структуры, то в нем должен быть указан размер цикла. По предложению Хеуорса углеводы называют так, чтобы показать их связь с одним из гетероциклов,— пираном или фураном. [c.958]

    Однако Хеуорс обнаружил производные углеводов, в которых имеется пятичленный цикл. [c.28]

    Рассмотрим взаимоотношения проекционных формул Фишера и перспективных формул Хеуорса, что имеет существенное значение при чтении литературы по химии углеводов. Возьмем в качестве примера a-D-ксилопиранозу LHa, б  [c.29]

    У. Н. Хеуорс предложил метод получения метиловых эфиров сахаров с использованием метилсульфата и щелочи. Метод сыграл важную роль в исследовании структуры углеводов. [c.668]

    Хеуорс, желая подчеркнуть цикличность строения углеводов, предложил для моносахаридов следующее начертание формул. [c.195]

    Хеуорс предвидел значение новой концепции для химии углеводов и с помощью моделей рассмотрел различные возможные формы молекул сахаров. В то время отсутствовали какие-либо экспериментальные данные, оправдывающие его спекуляцию. [c.431]

    В первоначальном варианте метода соответствовал галоге-нид-иону, однако в качестве уходящей группы могут использоваться также сульфонаты, сульфаты или/карбоксилаты) При 0-алкили-ровании простых спиртов в качестве растворителя часто используется избыток спирта, однако для спиртов с большой молекулярной массой обычно необходим растворитель. Кипячение спирта с металлическим натрием или калием в высококипящем углеродном растворителе, например толуоле или ксилоле, служит популярным методом получения алкоксидов, предположительно в связи с тем, что расплавленный металл имеет чистую поверхность для реакции со спиртом, однако в этих растворителях алкоксиды обладают ограниченной растворимостью. Для солей щелочных металлов лучшими, по сравнению с углеводорода.ми, растворителями являются жидкий аммиак и простые эфиры, однако наиболее эффективными растворителями для нуклеофильного замещения, особенно в случае метил- или бензилгалогенидов, где отсутствует проблема катализируемой щелочью р-элиминации, служат такие ди-полярные апротонные растворители, как ДМФ и ДМСО. Эти последние растворители особенно полезны при легком образовании эфиров полиатомных спиртов, таких как полисахариды [94]. Для получения алкоксидов в качестве основания обычно используются щелочные металлы, амид натрия и гидрид натрия, причем последний становится все более популярным в связи с его доступностью в виде порошка. Полезным вариантом метода, в котором в качестве растворителя используется ДМСО, является реакция гидрида натрия с растворителем с образованием соответствующего карб-аниона, представляющего собой сильное основание [95]. Метод метилирования по Хеуорсу [96], заключающийся в обработке диметил-сульфатом и гидроксидом натрия в воде, оказался особенно ценным при развитии хи.мии углеводов, однако в дальнейшем не нашел широкого применения. Этот метод не дает удовлетворительных результатов при этерификации алифатических спиртов, однако может применяться для фенолов. Тот факт, что данный метод может использоваться для углеводов, вызван, по-видимому, их несколько большей кислотностью по сравнению с алифатическими спиртами. [c.318]


    Формула Фишера <г- С-глюкопираноза Формула Хеуорса В циклических формах моносахаридов появляется еще один асимметрический атом углерода (С-1 у альдоз и С-2 у кетоз). Этот асимметрический атом углерода называется аномерным. Изомеры углеводов, отличающиеся расположением атомов и атомных групп у аномерного атома углерода, называются аномерами. Стереоизомер (пространственный изомер), в котором группа —ОН у аномерного атома С располагается под плоскостью цикла, называется а-аномером, а стереоизомер с противоположным расположением ОН-группы называется Р-аномером  [c.664]

    Г. Хеуорс предложил метод исследования структуры углеводов. [c.586]

    В растениях, например в картофеле, содержатся энзиматические системы, способные даже in vitro превращать глюкозо-1-фосфорную кислоту в такие углеводы, которые после метилирования и расщепления дают те же осколки, что и природный крахмал, или амилоза и амилопектин. По другим свойствам эти углеводы также очень близки амилозе и амилопектину (Хейнс, Хеуорс). С помощью так называемого Р-энзима из картофеля можно получить амилозу, а при большом избытке Q-энзима (из картофеля) — амилопектин Q-энзим может вызывать также превращение амилозы в амилопектин. [c.456]

    Согласно предложению Хеуорса, формулы всех циклов представляют схематически плоскими, что удобно для представления взаимного расположения гидроксильных групп, а для пяти-члеиных циклов это близко к истине При анализе циклических структур моносахаридов первое, что мы можем отметить — ЭТО исчезновение карбонильной функции и появление новой гидроксильной функции при С (называемой полуацетальной вообще или гликозидной, применительно к углеводам) и, соответственно, нового асимметрического центра при этом же углеродном атоме Так вот, в силу планарности карбонильной группы,присоединение реагента к ней возможно с обеих сторон плоскости, результатом чего является пара циклических изомеров (диастереомеров), называемых а- и 3-формами (а- и р-аномерами) А во-вторых, возникает вопрос, что же является истиной для моносахаридов в структурном плане" Многочисленными пионерскими работами в начале двадцатого столетия, основанными на [c.35]

    Разработка Ф. Преглем в нач. 20 в. методов микроанализа орг. в-в способствовала дальнейшему быстрому развитию химии прир. соед., что ознаменовалось работами Виланда (1910) по установлению природы желчных к-т, А. Виндауса (1913-15)-природы холестерина, работами Г. Фишера (1927-29) по синтезу таких ключевых соед., как порфирин, билирубин и гемин, У. Хоуорюа (Хеуорс)-по установлению структуры углеводов, синтезу витамина С, П. Каррера, Р. Куна (1911-39)-по получению каротиноидов и витаминов Bj, Bg, Е и К химия алкалоидов, половых гормонов, терпенов была создана работами А. Бутенандта (1929- 61), Л. Ружички (1920-24), А.П. Орехова и Р. Робинсона. [c.397]

    Химия углеводов занимает одно из ведущих мест в истории развития органической химии. Тростниковый сахар можно считать первым органическим соединением, вьщеленным в химически чистом виде. Произведенный в 1861 г. А.М. Бутлеровым синтез (вне организма) углеводов из формальдегида явился первым синтезом представителей одного из трех основных классов веществ (белки, липиды, углеводы), входящих в состав живых организмов. Химическая структура простейших углеводов бьша выяснена в конце XIX в. в результате фундаментальньгх исследований Э. Фишера. Значительный вклад в изучение углеводов внесли отечественные ученые A.A. Колли, П.П. Шорыгин, Н.К. Кочетков и др. В 20-е годы нынешнего столетия работами английского исследователя У. Хеуорса бьши заложены основы структурной химии полисахаридов. Со второй половины XX в. происходит стремительное развитие химии и биохимии углеводов, обусловленное их важным биологическим значением. [c.169]

    В 20-х годах У. Хеуорс предложил более совершенный способ написания структурных формул углеводов. Формулы Хеуорса—шести- или пятиугольники, причем они изображены в перспективе кольцо лежит в горизонтальной плоскости. Находящиеся ближе к читателю связи изображают более жирными линиями (углеродные атомы цикла не пишут). Заместители, расположенные справа от остова молекулы при ее вертикальном изображении, помещают ниже плоскости кольца, а заместители, находящиеся слева,— выше плоскости кольца. Обратное правило применяют только для того единственного углеродного атома, гидроксильная группа которого участвует в образовании циклгиеского полуацеталя. Так, у В-сахаров группу СН,ОН пишут над этим атомом углерода, а водородный атом при нем—внизу. [c.174]

    Р. Фиттиг и А. Байер первыми предложили в 1868 — 1870 гг. правильную формулу глюкозы, однако оставалось неясным, каким образом моносахариды, имеющие идентичную формулу, moi t различаться по физико-химическим свойствам. Это противоречие удалось разрешить Э. Фишеру с помощью стереохимических представлений Я. Г. Вант-Гоффа он определил относительную конфигурацию ряда моносахаридов (глюкозы, фруктозы, маннозы, араби-нозы), что заложило основу современной химии углеводов. Многие свойства моносахаридов тем не менее оставались необъясненными. В частности, число изомерных моносахаридов и их производных было вдвое больше, чем следовало нз положений стереохимической теории, что свидетельствовало о наличии дополнительного асимметрического атома углерода. А. А. Колли объяснил этот парадокс образованием оксидного цикла за счет альдегидной группы и одного из гидроксилов, однако размер цикла — трехчленный — был предсказан им неправильно. Экспериментальное доказательство размера лактольного кольца было получено лишь в 20-х годах нашего века У. Хеуорсом, применившим для решения задачи метод метилирования. [c.444]


    Конформации моносахаридов. Дальнейшим шагом в познании строения углеводов явились представления об их конформациях (см. стр. 89). Кольца фураноз почти плоские,, тогда как кольца пираноз (-и пиранозидов) изогнуты в пространстве. В-В Иду наличия пяти асимметр ических углеродных атомов это приводит к существованию для пираноз восьми конформаций (см. том II). В связи с этим формулы Хеуорса оказываются недостаточными для точной передачи простраиственных отношений в молекуле, и в настоящее время много усилий прилагается д-ля установления, в каких конформациях существуют различные углеводы. Та,к, например, установлено, что а-метил-глюкозид существует почти исключительно в виде следующей, конформации (Ривз)  [c.639]

    Хотя структура II и отражает основные свойства а-В-глюкозы, она дает недостаточное представление о действительной форме молекулы и пространственном расположении различных функциональных групп относительно друг друга. Хеуорс много лет назад предложил более совершенный способ написания структурных формул углеводов. Примером проекционной формулы Хеуорса является структура III (фиг. 80). При таком изобра ке-нии считается, что углеродный остов молекулы вместе с этерифицпрованным кислородом лежит в одной плоскости располагая замещаюш ие группы выше или ниже плоскости кольца, обозначают таким способом их конфигурацию. При переходе от формул типа II к проекционным формулам Хеуорса (структура III) руководствуются следующими правилами 1) заместители, находящиеся справа от остова молекулы при ее линейном изображении, помещаются ниже плоскости кольца при изображении молекулы в циклической форме, а заместители, находящиеся слева, занимают положение выше плоскости кольца 2) обратное правило применяется только для того единственного углеродного атома, гидроксильная группа которого участвует в образовании циклического полуацеталя. Так, у В-сахаров группа СНзОН пишется в верхнем положении, а водородный атом при том же углероде — внизу, несмотря на то что он находится слева в линейной формуле. Эта необычная ситуация возникает потому, что линейные формулы типа II на самом деле не дают правильного представления о структуре. Структурную идентичность линейной и циклической формул значительно легче понять, если изобразить линейную формулу следующим образом (это не влечет за собой изменения конфигурации при С-5)  [c.258]

    СЯ результатом того, что капсулярные полисахариды обоих типов химически родственны. Полисахарид пневмококков типа VHI также состоит из D-глюкозы и D-глюкуроновой кислоты, но в молярном отношении 7 2, а не 1 1, как в случае шолисахарида типа П1. Полисахарид пневмококков типа XIV содержит ЛГ-ацетилглюкозамин и D-галактозу в молярном отношении 1 3. В фундаментальной работе Авери показал, что типовая специфичность пневмококков контролируется особой нуклеиновой кислотой, характерной для каждого данного типа. Так, нуклеиновая кислота пневмококков типа III может индуцировать превращение пневмококков типа II в тип III это доказывает, что она контролирует синтез полигахарида, определяющего типовую специфичность. Если однажды изменение типа было индуцировано нуклеиновой кислотой, то и сама она будет далее репродуцироваться в процессе деления клеток. Аналогичные полисахариды со специфической активностью были получены и из других патогенных бактерий. Гаптен гемолитических стрептококков группы А состоит из эквимолекулярных количеств М-ацетил-О-глюкозамина и D-глюкуроновои кислоты. Два активных полисахарида туберкулезных бацилл человека представляют собой сильно разветвленные высокомолекулярные соединения, составленные из четырех углеводных остатков (Хеуорс, 1948). Было показано, что антигены некоторых бактерий представляют собой сложные комплексы, содержащие полисахарид и белок. Осуществлен сиитез углеводо- белковых антигенов, специфичность которых определяется строением углеводной составляющей. [c.566]

    Термин конформация был введен Хеуорсом в 1929 г. Позднее терминология конформаций углеводов была разработана Ривзом. [c.17]

    Осн. работы относятся к химии углеводов. В начале научной деятельности (1908—1914) занимался изучением терпенов, затем переключился на углеводную тематику. Предложил (1915) новый метод получения метиловых эфиров сахаров с использованием метилсуль-фата и щелочи. Этот метод сыграл важную роль в исследовании структуры углеводов. Доказал, что такие моносахариды, как глюкоза, галактоза, манноза и др., содержат не пятичленные, а шестичленные циклы. Усовершенствовал номенклатуру сахаров. Предложенные им ф-лы углеводов (ф-лы Хеуорса) явились первой попыткой отразить геометрическое строение их молекул. Совм. с Э. Л. Хестом исследовал строение витамина С и осуществил (1933, одновременно с Т. Рейхштейном) его первый хим. синтез. Одним из первых показал [c.474]

    Не всегда по достоинству оценивают тот факт, что значительной частью своих успехов в химии углеводов профессор Хеуорс обязан микроаналитическому методу анализа, разработанному Преглем. В 1925 г. из Бирмингема в Прагу был направлен X. Дру для освоения этой методики вернувшись обратно, он привез знаменитые кульмановские весы и другие приборы. С тех пор 5 мг метилированного углевода было вполне достаточно для анализа. Это обстоятельство имело большое значение, учитывая ограниченную доступность витамина С. Другим нововведением Хеуорса стало создание коллектива, названного им синдикат , который был способен выполнить поставленную задачу. Каждый исследователь разрабатывал свою узкую тему, концентрируясь на отдельной стадии синтеза или деградации. Лаборатория работала с большим напряжением, так как было известно, что конкуренты в Европе — профессора Каррер, Рейхштейн и Мичел — имеют достаточное количество материала и очень близко подошли к установлению структуры. Хеуорс, предвидя потенциальные возможности рентгеноструктурного анализа, в 1928 г. уговорил К. Г. Кокса (сейчас сэр Гордон) начать работу по выяснению структуры углеводов. Очень быстро Коксу удалось продемонстрировать, что в молекуле витамина С атомы углерода и кислорода лежат в одной плоскости, и подтвердить, что это действительно углевод. [c.5]

    Бирмингемская группа быстро подтвердила предложенную структуру, разработав синтетический путь получения Ь-аскорбиновой кислоты. Эта работа, завершившая огромный кропотливый труд, была опубликована в 1933 г., а Норман Хеуорс разделил триумф с Сент-Дьёрдьи в Стокгольме в 1937 г., где ему также была вручена Нобелевская премия за исследования в области структуры углеводов и витамина С. Альберту Сент-Дьёрдьи было суждено совершить еще несколько важных научных открытий. Он проделал большую часть подготовительной работы, приведшей к открытию цикла Кребса, инициировал изучение биохимических процессов в мышечной ткани и провел множество новаторских основополагающих исследований по установлению причин и возможных способов лечения рака. [c.46]


Смотреть страницы где упоминается термин Углеводы Хеуорса: [c.60]    [c.579]    [c.540]    [c.541]    [c.51]    [c.260]    [c.456]    [c.166]    [c.474]    [c.474]    [c.40]   
Основы органической химии 2 Издание 2 (1978) -- [ c.14 , c.17 ]




ПОИСК







© 2025 chem21.info Реклама на сайте