Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо металлическое, определение фосфора

    Определение вольфрама основано на выделении его из раствора навески в виде растворимой в кислотах вольфрамовой кислоты Н2 У 04-Н20 желтого цвета при этом вольфрам одновременно отделяется от большинства сопутствующих компонентов. Образование осадка вольфрамовой кислоты происходит в результате окисления карбидного и металлического вольфрама действием азотной кислоты. Вольфрам обычно не весь выделяется в осадок, небольшая часть его остается в растворе. При очень точных анализах в фильтрате оставшуюся часть вольфрама снова выделяют в осадок с помощью коагулятора (желатины) или осаждают алкалоидом (цинхонином). Осадок вольфрамовой кислоты способен соосаждать примеси из раствора (кремниевую кислоту, железо, фосфор, хром, ванадий, молибден, ниобий и др.), поэтому титриметрический и фотометрический методы имеют определенные преимущества, так как загрязнения здесь существенного влияния не оказывают, как это происходит в гравиметрическом методе. [c.343]


    Так, например, в сталеплавильных печах в ходе плавки возникает взаимно несмешивающаяся система жидкий металл — расплавленный шлак, между слоями которой происходит сложное равновесное распределение ряда компонентов шихты. Особенно нежелательными примесями в стали являются сера и фосфор. Присутствие этих элементов (обычно в виде соединений с железом) сильно ухудшает механические и химические свойства стали. В силу действия закона распределения, в соответствии с которым сера и фосфор распределяются определенным образом между металлической ванной и шлаком, сталь, совершенно не содержащую этих примесей, получить не удается. Можно лишь получить металл, в котором сера и фосфор остаются в незначительных (допустимых ГОСТом) количествах. Этого добиваются соответствующим подбором химического состава шлака. [c.247]

    Определение следов мышьяка, фосфора, висмута, сурьмы и др. в металлической меди по стандартному методу производится путем осаждения этих примесей совместно с гидроокисью железа. Анализируемый металл растворяют в азотной кислоте, нейтрализуют раствор, прибавляют немного хлорида железа (П1) и далее раствор соды. В обычных условиях для осаждения гидроокиси железа соду применять неудобно, так как получается очень объемистый осадок гидроокиси и основных солей, склонный к адсорбции присутствующих в растворе ионов. Однако этот недостаток обычного осаждения и используется в данном случае, так как осадок гидроокиси железа захватывает примеси (фосфор, мышьяк, висмут, сурьма и др.), которые необходимо определять. Полученный концентрат, отделенный таким образом от главного количества меди, используют для дальнейшего анализа. [c.80]

    Кроме фосфора, в исследуемом препарате может быть определен азот. Эта реакция построена иа том принципе, что при прокаливании испытуемого препарата с металлическим калием образуется цианид калия, который с гидроксидом железа дает желтую кровяную соль — К4 [Fe ( N) ]. Последняя с солями железа (П1) образует синий осадок берлинской лазури по уравнению  [c.218]

    В литературе опубликованы амперометрические методы определения некоторых гетероэлементов в растворах после разлон ения органических соединений. Так, фосфор в виде фосфата титруют, используя реакции осаждения этого аниона солями различных металлов — свинца [22], урана [23], железа [24]. Для индикации точки эквивалентности служит диффузионный ток избытка осади-теля. Аналогичным же методом находят содержание и мышьяка (осаждением арсената железа) [24]. Описан также способ последовательного титрования трех галогенов нитратом серебра в одном растворе плава после восстановительного разложения органического веш ества с металлическим калием [25]. Тот же прием применен и к определению азота в виде цианида [26]. [c.160]


    При пасгюртном анализе железных руд и агломератов определяют содержание товарной влаги, общее содержание железа, закиси железа, двуокиси кремния или нерастворимого остатка, окиси кальция, фосфора, серы. В отдельных случаях определяют содержание окиси магния, окиси алюминия, меди и др. При полных анализах кроме указанных компонентов, определяют металлическое железо, марганец, титан, ванадий, хром, щелочные металлы, свободную кремневую кислоту реже в железных рудах определяют мышьяк, сульфидную серу и углерод. Для специальных анализов иногда требуется определение бора, цинка, свинца, германия и др. [c.79]

    Сталь получают путем передела белого (передельного) чугуна с добавлением скрапа, представляющего собой металлические отходы (стальной и чугунный лом, стружка, опилки, обрезки и др.), и железной руды. Сущность различных процессов одинакова и заключается в уменьщении (путем окисления) содержания углерода, кремния и марганца в сплаве до определенных величин, а также возможно более полном удалении вредных примесей — серы и фосфора. Все эти элементы (кроме серы, присутствующей в виде FeS) превращаются в окислы, которые удаляются в виде газа (СО) или после взаимодействия с флюсами — в виде щлака. Таким образом, в противоположность доменному процессу, где преобладают реакции восстановления окислов, здесь, наоборот, протекают реакции окисления. В качестве окислителей используются кислород и окислы железа, а получают сталь в различных сталеплавильных устройствах периодическим способом (ввиду высоких требований, предъявляемых к ее качеству). Один цикл операций называется плавкой. [c.188]

    Наряду с повышением чувствительности спектрофотометрических определений за счет увеличения молярных коэффициентов погашения, возможен и другой путь, связанный с усовершенствованием измерительной аппаратуры и самой техники измерения [6]. Спектрофотометры и фотоэлектроколориметры, выпускаемые в СССР, снабжены кюветами с длиной оптического пути до 5 см при объеме в 25 жл и с большей длиной при значительно увеличенном объеме. Последние снабжены металлическими деталями, что дополнительно делает их малопригодными при анализе материалов высокой чистоты. Мы использовали специально изготовленные удобные в работе цилиндрические кюветы из оргстекла или кварца с объемом до 10 мл и длиной оптического пути до 12 см [26]. С применением таких кювет удалось повысить чувствительность онределения в несколько раз и в сочетании с другими указанными выше приемами довести ее, например, при определении примеси железа в твердых и жидких хлоридах тугоплавких металлов (Та, №, 2г, Hf, V, Т1), до 10 —10 % [27, 28]. Указанные кюветы использовали также при определении примеси фосфора в Оа, Аз, ЗЬ и их хлоридах с чувствительностью 10 % [29] и во многих других случаях. [c.175]

    Мухина 3. С. и Сударчикова Т. И. Определение примесей в железном порошке. [Определение общего железа, металлического железа, окиси алюминия, кремневой кислоты, марганца, углерода, фосфора, серы], Тр. (Всес. н.-и. ин-т авиац. м-лов ВИАМ ), 1949, 2, с. 19—21. 4875 [c.190]

    Приведены лишь некоторые методики определения фосфора в металлическом железе и железных рудах. Описан метод [1] определения 1 10 % фосфора в металлическом железе. В этом случае большую часть железа отделяют электролизом на ртутном катоде, затем осаждают элементы сульфидной группы сероводородом и в фильтрате определяют фосфор колориметрическим методом по молибденовой сини. Для оп-зеделния фосфора в железе особой чистоты предложен метод 2] отделения железа на ртутном катоде. Фосфор определяют спектрофотометрически после экстракции фосфорномолибденовой кислоты изобутиловым спиртом. [c.239]

    Катализаторы Г010ПЯТ из металлического железа либо из природной магнитной руды или искусствен ного магнетита. Качество сырья должно удовлетворять определенным требованиям. Так, при содержании в сырье 0,027о серы активность катализатора снижается на 157о на качестно катализатора заметно влияют примеси n сырье фосфора, меди и др. [c.117]

    Для выполнения определения навеску металлического железа от 1 до 5 г, в зависимости от содержания фосфора, растворяют в 60—100 мл HNO3 (1 1). [c.140]

    Третьей вполне определенной модификацией фосфора является черный фосфор, впервые полученный Бриджменом (Bridgman, 1914) нагреванием белого фосфора до 200° под давлением 12 ООО ат. Удобнее получать его (Krebs, 1954) длительным нагреванием белого фосфора до 380° в присутствии тонкоизмельченной ртути. По химическому поведению он очень похож на красный фосфор, но окисляется во влажном воздухе быстрее, чем красный. Черный фосфор имеет удельный вес 2,69, твердость 2, обладает окраской цвета железа и металлическим блеском. Он обладает также металлической электропроводностью и хорошей теплопроводностью. Структуру его решетки см. на стр, 626. Ниже 550° черный фосфор является термодинамически наиболее стабильной модификацией этого элемента. Но при его образовании, в случае отсутствия катализатора, должен быть преодолен очень значительный потенциальный барьер (см. т. II, гл. 17). [c.675]


    Аморфное состояние метастабильно и если превышается определенная температура, характерная для каждого сплава, то он переходит в устойчивое кристаллическое состояние. В аморфном состоянии у ряда сплавов наблюдается при сохранении пластичности повышенная твердость и упругость заметно возрастают некоторые электрические и магнитные свойства и, самое главное, сплавы легче пассивируются и коррозионная стойкость их повышается. Повышение коррозионной стойкости аморфного состояния сплавов определяется не только облегчением возникновения пассивации, но и более совершенным пассивным состоянием, что обусловлено гомогенной и однородной поверхностью сплава в аморфном состоянии (отсутствие различных фаз, границ зерен, межзеренной ликвации, инородных включений). В настоящее время получены аморфные сплавы на основе самых разнообразных металлических систем. Максимальный эффект повышения коррозионной стойкости при переходе в аморфное состояние наблюдается для металлических систем, склонных к переходу в пассивное состояние. В настоящее время выполнено большое количест во работ, посвященных исследованию ряда сплавов на основе системы Ре—Сг, содержащих значительное количество углерода, фосфора или бора в качестве аморфизаторов. Так, в ранних работах японских авторов [250—252] описаны свойства сплава на основе железа, содержащего 13 % (ат.) Сг (или 14% по массе) 13% (ат.) Р (или 8% по массе) 7% (ат.) С (или 1,7% по массе). Установлено, что сплав имеет повышенную пассивируемость в растворах кислот, не подвергается питтинговой коррозии даже в подкисленных растворах РеС1з. Значительное количество исследований аморфных сплавов на основе Ре—Сг, а также Т выполнено и в СССР [254—259]. [c.337]

    Например, при анализе металлической меди приходится определять очень малые KOJ1I,честна мышьяка, фосфора, висмута, сурьмы и других металлов. Их прежде всего концентрируют и отделяют от главной массы основного компонента—дтеди—осаждением с коллектором Для этого навеску меди растворяют в азотной кислоте, раствор нейтрализуют и, прибавив к нему раствор Fe ig, осаждают ионы Fe+- - - раствором Na- Og. Образуется очень объемистый аморфный осадок гидроокиси и основных солей железа (HI), играющий роль коллектора. Вместе с ним практически нацело осаждаются и все микрокомпоненты Далее полученный концентрат отделяют от раствора (в котором остается большая часть основного компонента—меди) и растворяют в какой-либо кислоте. При этом получается раствор, в котором концентрация микрокомпонентов уже достаточна для их количественного определения. [c.473]

    Сера. Взвешиваемая форма — SO4 [163]. При сожжении образуется смесь оксидов серы (IV) и серы (VI). На нагретом до 750—800°С серебре происходит количественное окисление смеси оксидов до SO3 с одновременным образованием сульфата серебра [179]. Оксиды серы поглощают в гальзе с металлическим серебром или посеребренной пемзой при указанной температуре. В присутствии в веществе щелочных или щелочноземельных металлов (большей частью это бывают сульфосоли) часть серы остается в контейнере в виде сульфата металла. Содержание серы рассчитывают из суммы привесов гильзы в форме SO4 и контейнера в форме MSO4. Гетероэлементы, не образующие термостойкие сульфаты, могут быть определены одновременно с углеродом, водородом и серой в виде их оксидов. В нашей практике это осуществлено для алюминия, бора, железа, иридия, кобальта, кремния, марганца, меди, молибдена, родия, ртути, рутения и фосфора. Возможности определения серы этими примерами не исчерпываются. Представление о термической устойчивости сульфатов некоторых металлов дают данные табл. 5. [c.105]

    Каммори [72] рассматривает методы определения в металлическом железе содержания меди, серебра, золота, кальция, бора, алюминия, углерода, мышьяка, висмута, хрома и кобальта. В работе Каммори [73] дан обзор методов определения в чистом железе содержания цинка, иттрия, кремния, олова, титана, циркония, ванадия, тантала, селена и вольфрама. В своей другой работе [74] автор приводит обзор методов определения в чистом железе содержания калия, магния, германия, свинца, гафния, фосфора, сурьмы, ниобия, кислорода, серы, молибдена, вольфрама, марганца и никеля. [c.27]

    Газохроматографический метод все чаще применяется для анализа газов в металлах и сплавах для выделения газов из них используются высокочастотное нагревание [175—176], локальный нагрев ксеноновыми разрядными лампами [177], воздействие лазерными лучами [178]. Основное применение этот метод находит при анализе железа и стали [179— 197], сплавов [198—200], огнеупорных и керамических материалов [175, 201, 202], жидкого алюминия [203], щелочных металлов [204, 205], титана [206], облученного бериллия и его соединений [207—211], чистого бора [212], препаратов урана [213], облученной нейтронами серы, фосфора [214—216] и др. Кроме того, были проанализированы газохроматографически газы, содержащиеся в пузырьках стекла [217—227], в материалах для электроники [222, 223], твердых металлических покрытиях [177, 191]. Заслуживает внимания возможность определения углерода в сильных кислотах [228]. Был изучен также состав газов, выделяющихся при дифференциальном термическом анализе [2, 229]. [c.272]


Смотреть страницы где упоминается термин Железо металлическое, определение фосфора: [c.195]    [c.149]    [c.465]    [c.375]    [c.537]    [c.8]    [c.20]   
Химико-технические методы исследования (0) -- [ c.194 ]




ПОИСК





Смотрите так же термины и статьи:

Железо металлическое

Железо металлическое, определение

Определение в фосфорите

Фосфор определение в железе



© 2024 chem21.info Реклама на сайте