Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Волокна механические свойства

    Механические свойства полиэфирной смолы в чистом виде и со стеклянными наполнителями в виде волокна (7096) и ткани (6096) [c.597]

    Комплекс ценных физико-механических свойств полиформальдегида обусловливает возможность применения его во многих областях техники. Из полиформальдегида изготавливают вкладыши и втулки подшипников скольжения, кольца подшипников качения, бесшумные шестерни, зубчатые ролики, корпуса и детали насосов, вентили для соединения труб, шпульки и катушки в текстильной промышленности и др. Окрашенный полиформальдегид может, быть использован для изготовления предметов широкого потребления — корпусов электробритв и фотоаппаратов, частей пылесосов, оправы для очков, расчесок, мыльниц, вешалок и др. Волокно из полиформальдегида имеет высокую прочность и водостойкость. [c.51]


    В качестве наполнителей применяют различные неорганические и органические материалы — порошкообразные, волокнистые или слоистые. К порошкообразным материалам относятся древесная мука, опилки, некоторые минеральные вещества к волокнистым— асбест, стеклянное волокно к слоистым — текстиль, стеклянная ткань, древесная стружка, бумага и др. (Газонаполненные пластмассы — пенопласты и поропласты — составляют особую группу.) Наибольшее повышение механической прочности достигается обычно при применении слоистых и волокнистых наполнителей. В табл. 68 сопоставлены основные механические свойства пластмасс, приготовленных на основе полиэфирной смолы, со свойствами смолы в чистом состоянии, а также со свойствами сплавов алюминия и конструкционной стали. [c.597]

    В качестве армирующих элементов слоистых и волокнистых композиционных материалов с металлической матрицей применяются волокна из углерода, бора, карбида кремния, оксида алюминия, высокопрочной стальной проволоки (сетки), бериллиевой, вольфрамовой и других проволок. Для обеспечения химической стойкости в расплаве матрицы и сцепления волокна с матрицей применяют защитные барьерные покрытия на волокнах из карбидов кремния, титана, циркония, гафния, бора, из нитридов и окислов этих и других элементов. При этом получается сложная многокомпонентная система матрица — переходный слой продуктов химического воздействия матрицы с барьерным покрытием — слой волокна. Механические свойства за счет армирования повыщаются в 1,5—3 раза (удельные в 2—5 раз) в зависимости от объемной доли и способа введения армирующих волокон. [c.78]

    Из данных таблицы 104 следует, что наилучшим комплексом физико-механических свойств обладают полипропиленовые волокна. Полипропиленовые волокна имеют более высокую температуру плавления, чем полиэтиленовые, не уступая последним, волокнам по другим свойствам. [c.344]

    У целлюлозы в твердом состоянии возникают регулярная система Н-связей и вследствие этого кристаллическая решетка, образуются микрофибриллы, фибриллы, ламеллы и клеточная стенка в целом. Из-за высокой энергии когезии, обусловленной Н-связями и превышающей прочность ковалентных связей в макромолекулах, у целлюлозы невозможно плавление и при нагревании происходит деструкция. Высокая энергия когезии затрудняет подбор растворителей. Выделенную из древесины целлюлозу растворяют лишь немногие растворители, которые способны преодолевать энергию ее межмолекулярного взаимодействия. Образование Н-связей между цепями целлюлозы и молекулами воды имеет важное значение при поглощении целлюлозой и древесиной гигроскопической влаги (см. 10.2). Высокая энергия Н-связей, особенно в кристаллических участках, понижает химическую реакционную способность целлюлозы, оказывая решающее влияние на скорость диффузии реагентов в целлюлозное волокно. Механические свойства технической целлюлозы и бумажного листа определяются межволоконными связями, возникающими в частности в результате образования Н-связей между макромолекулами целлюлозы на поверхностях фибрилл и волокон. [c.235]


    Опыты проводились с промышленными высокоориентированными полипропиленовыми, лавсановыми и капроновыми волокнами, механические свойства которых при комнатной температуре до и после проведения привитой полимеризации практически одинаковы для большинства образцов. [c.606]

    Почти все текстильные волокна поглощают влагу. Количество поглощенной влаги в значительной степени зависит от типа волокна. Механические свойства отдельных видов волокон зависят от относительной влажности среды. [c.109]

    Однако работы, проведенные в последнее время как отечественными, так и зарубежными исследователями, показали, что относительно низкие физико-механические свойства капроновых волокон, по сравнению с волокнами найлон-6,6 (анид), обусловлены процессами термоокислительной деструкции, предотвратить которые можно путем введения соответствующих антиоксидантов. [c.343]

    Задача. На основе разветвленных полимеров получить волокна с удовлетворительным комплексом механических свойств не удается. Однако добавка разветвленных полимеров, синтезированных прививкой одного полимера на другой, уменьшает структурную неоднородность изделий из смесей двух волокнообразующих полимеров, природа которых идентична основной и привитым цепям. Волокна, получаемые из смесей таких несовместимых полимеров в присутствии привитых сополимеров, обладают высокими механическими показателями. Примером могут служить волокна на основе смесей вторичного аце- [c.16]

    В связи с гибкостью углеродных волокон, возможностью плетения на их основе проводов, значительное число ра(5от выполнено по получению МСС, в которых в качестве углеродной матрицы применено углеродное волокно. МСС на основе углеродных волокон представляют практический интерес при их применении в космических аппаратах [6-71]. В этом случае можно достигнуть повышения электропроводности и ее низкого температурного коэффициента при допустимых значениях механических свойств и химической стабильности на воздухе и в вакууме, снижения веса кабелей и проводов в системах электропитания. Возможно и улучшение их вибростойкости. МСС УВ позволяют пропускать ток до 200 А/см . [c.312]

    Придание необходимых свойств полиамидам достигается также введением различных наполнителей. Так, антифрикционные наполнители (графит, дисульфид молибдена) улучшают износостойкость и снижают коэффициент трения полиамидов. Волокнистые наполнители (стеклянное волокно п асбест) значительно улучшают физико-механические свойства и теплостойкость полиамидов, уменьшают усадку изделий. [c.84]

    Почему волокна и пленки из синтетических полимеров в результате нагревания при + (10- 20) °С в течение 30-50 мин характеризуются меньшей дисперсией физико-механических свойств (прочности, удлинения), чем эти же полимерные материалы без тепловой обработки  [c.160]

    Для получения соответствующих ПАН-волокон и для исследования процессов структурообразования, происходящих на различных этапах их формования, при выполнении данной работы была сконструирована и изготовлена лабораторная установка, позволяющая в щироких пределах изменять условия реализации этих этапов. С помощью комплекса физических методов для системы ПАН-диметилацетамид различного состава получены следующие результаты установлены временные характеристики процесса гелеобразования исследуемой системе показано влияние условий перехода раствор-гель-ксерогель-ориентированное волокно на структуру и форму получающихся волокон, а также на их механические свойства. Оказалось, что исследованные волокна характеризуются более высокими значениями прочности и модуля упругости, чем волокна, приготовленные из того же полимера по обычной технологии. [c.76]

    Специфические механические свойства шерсти и волос (эластичность, несминаемость) существенно зависят от всех уровней их структурной организации, а также от морфологии волокна. Обычно волокна шерсти в поперечном сечении состоят из трех слоев различных клеток кутикулярного, коркового и серединного (рис. 6.13). Верхний слой волокна покрыт тонкой [c.378]

    Переработка углеродных волокон в текстильные материалы на обычном оборудовании связана с преодолением ряда трудностей. В связи с этим предлагается предварительно окислять ПАН-волокно под натяжением Этот прием позволяет получать углеродные материалы с высокими механическими свойствами высокопрочные, высокомодульные. Так, в условиях [c.60]

    Очень ценна попутная констатация Пирса о значимости а-фаз-иой воды для механических свойств волокон. Согласно его мысли, такого рода свойство, как жесткость волокна, может быть полностью определено на основании наличной а-фазной воды. Его теоретическое уравнение позволяет определять совершенно независимо количество воды в фазе а при любой равновесной влаге. Сопоставляя исчисленное количество а-фазной воды со степенью жесткости волокна, он обнаружил линейное отношение между этими величинами. [c.217]


    Наблюдаемые на тканях явления усадки, растяжения, образо-вания складок и морщин вызываются не только действием воды и теплоты, но и механическими свойствами текстиля. Эти свойства, в свою очередь, зависят частично от свойств, присущих самому волокну, и частично от факторов формы, причем последние определяются структурой пряжи, ткани и предмета одежды. [c.223]

    Искусственные волокна. Производство синтетических волокон занимает ведущее место в развивающейся промышленности полимерных материалов. Из всех химических волокон наиболее ценными являются синтетические волокна, которые по ряду физико-механических свойств перевосходят натуральные и искусственные волокна, получаемые на базе природной целлюлозы. [c.342]

    По сухому способу растворитель из выходящей струи раствора полимера удаляют встречным потоком горячего воздуха. Полученные таким образом струи застудневают и твердеют. Удаление растворителя является ди( узионным процессом, который влияет как на конечный диаметр волокна, так и на его механические свойства. Акриловые волокна производят по этой схеме (процесс фирмы Дюпон ), [c.479]

    Для получения требуемых механических свойств расположение волокон каждого слоя препрега может отличаться. Однако при этом во избежание появления недопустимых внутренних напряжений должно выдерживаться симметричное расположение волокна и препрегов в изделии. [c.521]

    Выбор длины волокна обусловлен видом используемого полимера. В определенных пределах увеличение отношения длины к диаметру волокна способствует повышению механических свойств, в частности ударной вязкости [9-63]. Однако длина волокна ограничивается его максимальной прочностью. [c.560]

    С увеличением напряжения натяжения в отсутствие изометрического нагрева усадка уменьшается. Однако влияние натяжения при 600-1000 С на механические свойства У В невелико (они увеличиваются примерно на 10%). Это связано с тем, что при натяжении процессы структурной перестройки вызывают разрывы в молекулярных цепях, что снижает механические свойства УВ, несмотря на увеличение ориентации в волокне. [c.587]

    Политетрафторэтилен (— СГг — СГз —) испохгьзуется в смесях с углеродными волокнами, сажей, графитом, дисульфидом молибдена [2-121], а также металлическими порошками, в частности медным [2-122], для применения в качестве антифрикционных материалов. Однако в данном случае его следу т рассматривать не как связующее, а как наполненный углеродными порошками полимер. В этом случае указанные наполнители, несколько повышая его коэффициент трения, улучшают его износоустойчивость и механические свойства. [c.134]

    При введении волокнистых наполнителей не только улучшаются физико-механические свойства резин, но и обеспечивается анизотропия свойств в материале. В той или иной мере применение при производстве РТИ нашли природные, химические и минеральные волокна. Важной характеристикой волокнистых наполнителей является фактор формы — отношение длины волокна к диаметру. У большинства волокон он изменяется в широких пределах от 5 до 2700, хотя оптимальным считается фактор формы от 100 до 200. При среднем диаметре волокон 20-30 мкм желательна длина 3,0-4,5 мм. Волокна большей длины сложней равномерно распределить в объеме резины, они, как правило, перепутываются, образуя клубки. Поэтому рекомендуется волокна перед введением измельчить. Если необходимо ввести волокна большей длины, можно рекомендовать вво- [c.27]

    У образцов с поперечным направлением волокна механические свойства повышаются до степени обжатия 3—5, а в интервале более высоких степеней обжатия до 10 эт и свойства понижаются. Дальнейшее увеличение степени обжатия почги не изменяет механических свойств. По данным этого же завода оптимальной степенью обжатия хромоникельвольфрамовой стали следует считать 5—6. [c.23]

    По данным другого завода. в Германии видно, чт1о при возрастающей степени обжатия до 10 механические свойсгва образцов хромоникельвольфрамовой прокованной стали с продольным направлением волокна заметно повышаются применение более высоких степеней обжатия их почти не изменяет. У образцов с поперечным направлением волокна механические свойства повышаются до степени обжатия 3,5—4, в интервале до 10 — понижаются. Применение степени обжатия свыше 10 практически не изменяет механических свойств образцов, имеющих поперечное направление волокон. [c.23]

    Условия в прядильной шахте изменяются от зоны к зоне так, концентрация растворителя, конечно, уменьшается от сердцевины волокна наружу и от фильеры к приемному приспособлению. Во время прядения во избежание воз-никнове1шя неравномерности волокна необходимо установить стационарные условия во всех зонах шахты. Точно так же следует строго контролировать и другие параметры—концентрацию и вязкость растворов, температуру прядильного раствора и температуру в прядильной шахте, поддерживая их в узких пределах в противном случае будет получено неравномерное волокно. Механические свойства обычно тем лучше, чем выше концентрация прядильного раствора. С увеличе1шем концентрации прядильного раствора увеличивается степ. - нь ориентации при прядении. Можно сказать, что расплав представляет собой раствор 100%-ной концентрации и прядение из расплава является при прочих равных условиях наиболее перспективным методом получения прочных волокон. Но это рассуждение справедливо лишь для очень хороших растворителей, обеспечивающих полное диспергирование и сольватацию вы-соксполимера. [c.373]

    Действие антиоксидантов сводится к ингибированию окислительных процессов, происходящих при тепловых воздействиях на полимер. По данным ВНИИВ, наиболее эффективными стабилизаторами поликапролактама являются динафтил-п-фени-лендиамин и фенил-п-нафтиламин. Стабилизированное волокно капрон по своим физико-механическим свойствам не уступает аолокну анид, как это следует из таблицы 103. [c.343]

    Процесс получения УВН на основе ПАН состоит из 3-х стадий окисления, карбонизации и графитации. Предварительное окисление облегчает последующее дегидрирование ПАН-волокна. Особенно важно, что на этой стадии возникают предструктуры, обеспечивающие образование нужной структуры и ценных механических свойств углеродного волокна. [c.59]

    Если в тонких волокнах есть микродефекты, вызывающие локальные концентрации нащ)яжений, то прочность углеродных волокон уменьшается Дефектность волокон обуславливает линейную зависимость их прочности от длины с увеличением длины значительно снижается прочность и несколько увеличивается модуль упругости. По уровню механических свойств углеродные волокна делятся на три гругшы низкие, средние, высокие (табл. 1.5) [c.71]

    Некоторые методы переработки полимеров"рассчитаны на то, что формование надмолекулярных структур (структурирование) будет происходить непосредственно в самом процессе переработки. Примерами таких технологических процессов являются формование волокна и экструзионно-выдувное формование с предварительной вытяжкой. В первом примере волокно после фильерного формования для получения нужной структуры должно быть подвергнуто холодной вытяжке (см. разд. 3.7). Во втором примере характер ое время релаксации полимера при температуре формования должно быть достаточно велико, для того чтобы в материале до начала ох. лаждения сохранилась большая часть созданной в процессе формования двухосной ориентации. Таким свойством обладают аморфные полимеры при температуре, несколько превышающей температуру стеклования. Можно назвать эту способность структурируемостью она зависит как от реологических характеристик расплава полимера, так и от его механических свойств при Тд < Т < Г (. [c.615]

    При сравнительном рассмотрении механических свойств КМУП в направлении, параллельном расположению волокон, необходимо обязательное указание на тип применяемого волокна. Это хорошо иллюстрируется данными рис. 9-3. Из этого рисун- [c.514]

    Оптимальное содержание углеродного волокна (УВ) в КМУП находится в пределах 60-85% (объем.) (в основном 65%). При меньшем содержании снижается реализация механических свойств КМУП, а при большем резко увеличивается хрупкость материалов в связи с малым относительным удлинением У В, в пределах 1,1-1,3%. В последнее время этот показатель достиг значения 1,8-2,0% [9-24]. В связи с этим возможно увеличение объемного содержания УВ и повышение ударной вязкости КМУП. Как видно из рис. 9-11, влияние содержания УВ на ударную вязкость неоднозначно. Оно зависит от вида вол<жна, обработки его поверхности, типа связующего. [c.528]

    Влияние поверхностной обработки волокна на другие механические свойства неоднозначно. В результате окисления поверхности высокомодульного волокна (Е 450 ГПа) прочность при срезе КМУП на его основе может быть повышена с 15 до 55-70 МПа, а высокопрочного среднемодульного (Ея250 ГПа) с 50 до 100-125 МПа [9-6]. Это связано с соответствующим увеличением угла смачивания связующем. [c.534]

    Механические свойства слоистого отвержденного однонаправленного углепластика при различном направлении статической нагрузки, объемная доля волокна 62%, эпоксидное связующее [9-14] [c.543]

    Ударная вязкость у КМУП 30 в 2-3 раза выше по сравнению с укладкой 2В [9-51] при относительной изотропности этого параметра. Это объясняется меньшими расслоениями, так как волокна, которые располагаются перпендикулярно основной плоскости намотки, скрепляют слои перпендикулярно этой плоскости. В результате остаточные механические свойства после динамических нагрузок увеличиваются. [c.545]

    Как неоднократно отмечалось выше, многие механические свойства КМУП, особенно прочность при сдвиге и изгибе, при статических и ударных нагрузках зависят от относительной деформации углеродного волокна. В связи с повышенной относительной деформацией стеклянных волокон отмеченные параме- [c.548]

    Полиэфирэфиркетоны позволяют получать препреги с угле-роцными волокнами с высоким уровнем механических свойств. Остаются не до конца решенными проблемы получения КМУП из этих препрегов в связи с тем, что при их деформации, когда связующее находится в пластичном состоянии, происходят сдвиги волокон от заданного положения и в результате — снижение механических свойств КМУП [9-58]. [c.556]

    Содержание углеродного волокна в композите определяет его прочность. Чем выше объемное содержание высокопрочного волокна, тем больше прочность композита. Однако эта зависимость не подчиняется правилу смесей и механические свойства ниже на 20-30%. Отдельные показатели соответствуют различным коэффициентам использования волокна. Оптимальные результаты получаются при 50-55% (объем.), 60-65% (масс.), волокна. Для КМУУ с указанным составом наблюдается повышенная объемная усадка при первичной карбонизации. Она вызывает при 450-550"С образование трещин, которые располагаются перпендикулярно оси волокон. Наибольшее число трещин возникает в объемах композитов с повышенным содержанием связующего. Увеличение содержания волокна до 70-75% (масс.) снижает усадку до десятых долей процента. Это позволяет получить КМУУ с улучшенными механическими свойствами. [c.645]

    Влиявяе вида волокна на механические свойства КМУУ, уплотненных пиролитическим углеродом (методом термического градиента) [10-1] [c.646]

    С увеличением способности кокса к графитации его усадка при карбонизации и графитации повышается, а механические свойства КМУУ понижаются. Ударная вязкость при пониженной адгезии кокса к волокну повышается [10-25]. [c.647]


Смотреть страницы где упоминается термин Волокна механические свойства: [c.413]    [c.36]    [c.309]    [c.5]    [c.103]    [c.533]    [c.647]   
Краткий справочник по химии (1965) -- [ c.408 ]

Краткий справочник химика Издание 6 (1963) -- [ c.228 ]




ПОИСК





Смотрите так же термины и статьи:

Волокна механические



© 2025 chem21.info Реклама на сайте