Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кремний и олово, определение

    Определению молибдена роданидным методом не мешают ионы алюминия, кобальта, урана, тантала, натрия, калия, кремния, кальция, магния, титана, ванадия, хрома, марганца, никеля, цинка, мышьяка, серебра, олова, сурьмы и ртути. Соединения железа (III) и меди усиливают интенсивность окраски, вероятно, вследствие образования много-ядерных комплексов, содержащих молибден, железо (или медь) и роданид. Мешающее влияние вольфрама устраняют введением винной кислоты, препятствующей образованию роданидных комплексов вольфрама. [c.379]


    Принадлежность данного сплава к определенному типу дает возможность с большой степенью достоверности предвидеть примерный его состав. Так, например, алюминиевые сплавы содержат магний, железо, кремний, титан, медь, цинк, марганец, никель и др. медные сплавы — олово, цинк, СБ1 н ц, сурьму, висмут, железо, никель, кремний, фосфор и др. [c.453]

    Для анализа использован атомно-абсорбционный СФМ Перкин-Элмер , модель 303. Условия определения каждого элемента взяты из рекомендаций фирмы-изготовителя прибора. В расчете на анализ 2%-ного раствора достигнуты следующие пределы обнаружения (в мкг/г) литий, натрий — 0,1, калий — 0,3, магний, цинк, кадмий — 0,5, кальций—1,0, серебро—1,5, медь — 2,5, сурьма — 3, железо, никель — 5, свинец—10, алюминий, кремний, олово—50, титан—70, ртуть—100, бор—1000. [c.218]

    Чувствительность определения железа, кобальта, никеля, марганца, кремния, олова, свинца, висмута и некоторых других элементов можно значительно повысить, усиливая интенсивность излучения линий в прикатодном слое. Это явление объясняется скоплением положительных ионов у катода. Прикатодное усиление линий особенно заметно при испарении небольшой навески (5—10 мг) из канала Малого диаметра (0,8—1 мм) и величине аналитического промежутка 10—12 мм. Щель спектрографа освещают участком дуги высотой 1—2 мм, прилегающим к катоду [19, 361]. [c.139]

    Хотя соответствующие соединения кремния и углерода [2], кремния и бора [3], кремния, олова и свинца [3] проявляют определенное сходство, но между ними имеется также существенная разница. [c.50]

    Далее Дюма на основании своих опытов и выводов предлагал изменить атомные веса некоторых элементов. Например, он настаивал на уменьшении вдвое атомного веса ртути атомный вес фосфора он предлагал увеличить вдвое. Но интересно отметить, что определение плотности паров серы и фосфора служило ему для опровержения своих предыдущих выводов об атомном составе соединений кремния, олова и титана. Он писал Я не мог предположить тогда, что эти соединения могут включать треть или четверть объема пара простых тел..., и я считал достаточно обоснованным необходимость уменьшить атомный вес этих тел. Эти соображения, которые противоречили общему взгляду Берцелиуса, настолько подействовали на этого знаменитого химика, что он воздержался от их принятия. И поэтому я с настоящим удовлетворением вижу в результатах моих новых опытов возможность устранить все трудности. На самом деле, если фосфор может войти одной четвертью объема в газообразное соединение, то это еще не доказывает, что олово, титан, бор, кремний не могут входить в соединения одной третью своего объема или даже еще меньшим объемом [55, стр. 174]. И Дюма признал формулу КОз для кислот кремния и бора. Здесь Дюма, оставляя свои прежние произвольные допущения о соединениях кремния, олова, титана и бора, с такой же легкостью экстраполирует выводы о плотности серы и фосфора На данные элементы, считая, что он этим снимает возражения Берцелиуса против своих выводов. [c.84]


    Пятилетние испытания определенно показали, что скорость коррозии в городской атмосфере для меди и сплавов меди с небольшим количеством мышьяка, никеля, кремния, олова и кадмия уменьшается со временем очевидно, здесь образуется защитная пленка. Нет данных, что образуется защитная пленка иа цинке, и мало заметно уменьшение скорости коррозии никеля эти факты находятся в согласии с растворимым характером продуктов коррозии обоих металлов. [c.199]

    Большинство молибдатных кронов содержит соединения алюминия и кремния, причем количество этих стабилизаторов колеблется от десятых долей процента до нескольких процентов. В некоторые молибдатные крона входят соединения сурьмы и олова. Определенной закономерности меж.ту количеством введенных стабилизаторов и свойствами пигмента пока не установлено. Свойства конечного продукта в значительной мере зависят от того, на какой стадии синтеза вводят тот или иной стабилизатор. [c.19]

    К каждой из двух частей диаграммы полностью относится сказанное о диаграмме 5, с тем отличием, что роль второго компонента (А или В) играет соединение А В , состав которого отвечает точке О. Наличие соединения подтверждается минимумами или максимумами на кривых электропроводности, твердости и т. д. Подобного рода диаграммы (иногда осложненные образованием твердых растворов) имеют системы магний — кремний, магний — германий, магний — олово, кальций — кремний и др. по ним установлено существование соединений типа А В (Мд З и т. д.), имеющих определенный тип строения [c.37]

    Многие спектральные методы, разработанные для определения натрия в элементах, применимы для определения натрия в сплавах и соединениях этих элементов. Поэтому такие методы также рассмотрены в данном разделе. Спектральные методы применяют для определения натрия в рубидии [42, 421], магнии [1112], кальции [485], алюминии [537, 690, 820, 844, 956, 974, 1006, 1112, 1114, 1208, 1215], графите [936], кремнии [138], олове [388], свинце [495, 522, 773], ванадии [78], мышьяке [1007], сурьме [115, 149, 1007], ниобии [35], тантале [129], селене [123, 969, ИЗО], теллуре [123, 140, 1198], хроме [406, 679], молибдене [179, 469, 862], вольфраме [35, 469, 798, 898, 1013], уране [156, 589, 1054], осмии [124, плутонии [1245]. [c.163]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]

    В основном этот метод аналогичен методу определения примесей в цирконии (см. стр. 169) он дает возможность определять алюминий, ванадий, вольфрам, железо, кальций, кобальт, кремний, магний, марганец, медь, молибден, никель, ниобий, олово, титан и хром. [c.182]

    При использовании железа следует соблюдать осторожность, поскольку оно в определенных условиях способно образовывать сплавы при плавлении цинка, кадмия, алюминия, кремния, германия и олова. [c.2147]


    Метод нейтронного активационного анализа применен для определения ультрамалых содержаний ртути в ряде металлов, рафинированных зонной плавкой и другими физико-химическими методами алюминии [110, 622, 1204], меди [173, 601], селене [1107], теллуре [120], кремнии [1018], галлии [135], цирконии [689, 824], висмуте [858], свинце [161], олове [862], германии [270], а также сере [406]. [c.157]

    Как показали контрольные опыты, наличие до 5% алюминия, хрома, железа, магния, молибдена, никеля и олова, до 2% меди и до 1% ниобия и вольфрама не сказывается ка определении кремния в пределах 0,1—0,5%. Ванадий повышает оптическую плотность раствора, но влияние до 5% ванадия можно компенсировать введением эквивалентного количества ванадия в холостой раствор. [c.88]

    ПОЛУПРОВОДНИКИ — вещества с электронной проводимостью, величина электропроводности которых лежит между электропроводностью металлов и изоляторов. Характерной особенностью П. является положительный температурный коэффициент электропроводности (в отличие от металлов). Электропроводность П. зависит от температуры, количества и природы примесей, влияния электрического поля, света и других внешних факторов. К П. относятся простые вещества — бор, углерод (алмаз), кремний, германий, олово (серое), селен, теллур, а также соединения — карбид кремния, соединения типа filmen (инднй — сурьма, индий — мышьяк, галлий — сурьма, алюминий — сурьма), соединения двух или трех элементов, в состав которых входит хотя бы один элемент IV—VII групп периодической системы элементов Д. И. Менделеева, некоторые органические вещества — полицены, азоаромати-ческие соединения, фталоцианин, некоторые свободные радикалы и др. К чистоте полупроводниковых материалов предъявляют повышенные требования, например, в германии контролируют примеси 40 элементов, в кремнии — 27 элементов и т. д. Тем не менее некоторые примеси придают П. определенные свойства и тип проводимости, а потому и являются необходимыми. Содержание примесей не должно превышать 10 —Ш %. П. применяются в приборах в виде монокристаллов с точно определенным содержанием примесей. Применение П. в различных отраслях техники, в радиотехнике, автоматике необычайно возросло в связи с большими преимуществами полупроводниковых приборов — они экономичны, надежны, имеют высокий КПД, малые размеры и др. [c.200]

    Определению циркония не мешает присутствие до 12% олова, 5% алюминия и молибдена и до 0,5% кремния. Следовательно, указанный метод можно применять для анализа многих титановых сплавов, но необходимо обращать внимание на детали метода. [c.110]

    Молибденомышьяковая кислота всегда образуется в а-форме, которая при рн 1 медленно переходит в р-форму. Все молибденовые ГПК могут быть получены в р-форме в водно-органических средах [8], чем обусловлено проведение реакции образования гетерополикислот фосфора, кремния в смешанных средах [9]. Этот метод [9], не уступая по простоте выполнения обычному методу фотометрического определения фосфора в водных растворах, несколько превосходит его по чувствительности. В последнее время для получения синих форм ГПК в качестве восстановителей используют преимущественно более мягкие восстановители [ 11] аскорбиновую кислоту, аскорбиновую кислоту 4-Н- антимонилтартрат и аскорбиновую кислоту с солью висмута, что предотвращает восстановление молибдена из молибдата аммония, который берут в избытке [10] применяют также соль Мора, хлорид олова [c.139]

    Вольфрам и молибден. Общие требования к методам химического и спектрального анализа Ниобий. Спектральный метод определения вольфрама и молибдена Ниобий. Спектральный метод определения тантала Тантал и его окись. Спектральный метод определения алюминия, ванадия, железа, кальция, кремния, магния марганца, меди, никеля, ниобия, олова, титана, хрома и циркония [c.821]

    Титан губчатый. Спектральный метод определения ванадия, марганца, хрома, меди, циркония, алюминии молибдена, олова, магния и вольфрама Титан губчатый. Спектральный метод оиределения кремния, железа и никеля [c.821]

    Галлий. Атомно-эмиссионный метод определения алюминия, висмута, железа, кремния, магния, марганца, меди, никеля, олова, свинца, хрома и цинка [c.822]

    Ферротитан. Метод определения фосфора Ферротитан. Методы определения меди Ферротитан. Метод определения алюминия Ферротитан. Метод определения кремния Ферротитан. Методы определения ванадия Ферротитан. Методы определения молибдена Ферротитан. Методы определения олова Ферротитан. Методы определения циркония Ферротитан. Методы определения хрома Ферротитан. Методы определения марганца Ферровольфрам. Методы определения вольфрама Ферровольфрам. Метод определения фосфора Ферровольфрам. Метод определения кремния Ферровольфрам. Метод определения марганца Ферровольфрам. Метод определения алюминия Ферровольфрам. Метод определения молибдена Ферровольфрам. Методы определения меди Ферровольфрам. Метод определения свинца [c.566]

    Материал, приведенный в предыдущем разделе, вовсе не следует рассматривать как свидетельство того, что в 8 2-реакциях в качестве нуклеофила пли отщепляющейся группы могут участвовать только галогены. В определении, которое было приведено, говорилось, что нуклеофилом является любое соединение, способное быть донором пары электронов, и, следовательно, класс нуклеофилов не ограничивается только анионами. Аналогично тот факт, что большинство уходящих групп уходит в виде анионов, еще не является необходимым условием того, что уходящая группа будет анионом. Более того, в реакциях 8 2 в качестве атакуемого атома может выступать не только атол углерода, но и атомы серы, брома, кремния, олова и других элементов. Однако общим для всех этих процессов является то обстоятельство, что нуклеофил атакует наиболее электроположительный участок поляризо-вагшой ковалентной связи. [c.177]

    Как показали контрольные опыты, присутствие до 0,4% хрома, меди, железа, свинца, марганца, молибдена, никеля, кремния, олова, титана и вольфрама не мешает определению урана. У леньшение навески пробы дает возможность определять более высокие концентрации урана. [c.161]

    Мы рассмотрим определение в алюминии следующих элементов серебра, мыщьяка, висмута, кальция, кадмия, меди, железа, галлия, ртути, магния, марганца, свинца, сурьмы, кремния, олова, титана и цинка. В основу изложения положены снимки с большим спектрографом Ф ю с с а и большим спектрографом Цейсса в ультрафиолетовой и с большим стеклянным спектро-графсм Штейнгеля — в видимой части спектра. Так как алюминий большей частью сильно загрязняется железом, то мы даем каждый раз мешающие линии железа. Если требуется большая осторожность, то это указывается двойным восклицательным знаком. [c.150]

    Мы рассмотрим определение элементов серебра, алюминия, мышьяка, золота, висмута, кальция, кадмия, меди, железа, галлия, ртути, магния, марганца, никкеля, сурьмы, кремния, олова, теллура и цинка. В основу были положены снимки с большим спектрографом Фюсса. В случае небольшой дисперсии мешает довольно сильный в некоторых частях спектра сплошной фон. [c.159]

    Детектирование реакционноспособных соединений с помощью ДЭЗ требует защиты радиоактивного источника от действия на него анализируемых веществ. Так, детектор с источником, обдуваемым дополнительным потоком инертного газа, был применен для определения малых концентраций хлоридов фосфора, кремния, олова и германия [46, 152]. Этот прием, незначительно усложнив конструкцию детектора и практически не повлияв на его чувствительность, позволил определить в восьмикомпонентной смеси неорганических хлоридов и металлоорганических веществ примеси трихлорида фосфора в концентрации Ы0 %, тетрахлорида кремния — до 1х Х10 %, оксихлорида фосфора—Ы0 %. Если чувствительность ДЭЗ по отношению к тетрахлориду кремния и фосфорсодержащим соединениям на несколько порядков выше, чем чувствительность катарометра, то к тетрахлориду олова чувствительность ДЭЗ и катарометра одинакова. [c.83]

    В золе исследуемых фракций нефтей Таджикской депрессии нолуколичественным спектральным анализом были обнаружены следующие микроэлементы натрий, медь, серебро, берилий, магний, кальций, стронций, барий, цинк, алюминий, лантан, кремний, олово, свинец, титан, цирконий, сурьма, висмут, ванадий, хром, молибден, марганец, железо, никель. Чтобы проследить распределение по фракциям тех микроэлементов (ванадий, хром, марганец, железо, никель, медь, свинец, молибден), которые были количественно определены в самой нефти, подобное определение их производилось и во всех изученных фракциях. Как видно из таблицы, микроэлементы распределены по фракциям неравномерно. Основная масса, например ванадия, сконцентрирована в асфальтенах и спирто-бензольных смолах, а никеля — в асфальтенах и петролейноэфирных маслах (исключение составляют фракции нефти Алмасы). Соответствук>щие данные показаны па рис. 5, 6. Что касается других микроэлементов (хром, марганец, медь, свинец, молибден), то в их распределении также наблюдается определенная закономерность. [c.127]

    Представляет интерес работа Шпеккера [68] по изучению пригодности различных экстракционных методов отделения железа применительно к определению в нем примесей других элементов. Котрбова [69] разработала спектральный метод качественного определения в металлическом железе меди, серебра, магния, цинка, кадмия, бора, алюминия, кремния, олова, свинца, титана, сурьмы, висмута, ванадия, хрома, вольфрама, марганца, кобаль- [c.26]

    Каммори [72] рассматривает методы определения в металлическом железе содержания меди, серебра, золота, кальция, бора, алюминия, углерода, мышьяка, висмута, хрома и кобальта. В работе Каммори [73] дан обзор методов определения в чистом железе содержания цинка, иттрия, кремния, олова, титана, циркония, ванадия, тантала, селена и вольфрама. В своей другой работе [74] автор приводит обзор методов определения в чистом железе содержания калия, магния, германия, свинца, гафния, фосфора, сурьмы, ниобия, кислорода, серы, молибдена, вольфрама, марганца и никеля. [c.27]

    Для определения примесеп кремния и олова В тантале пробу в виде окисла ввели в глубокий канал угольного анода дуги постоянного тока. [c.134]

    При определении кремния следует иметь в виду, что реакционноспособной является лишь мономерная форма, образующая молибденокремниевую кислоту в течение 75 с. Обычно для полного развития окраски необходимо 10—15 мин, в течение которых происходит деполимеризация димерной формы в мономерную. Для молибденокремниевой кислоты лучшими восстановителями являются аскорбиновая кислота, аминонафтолсульфат натрия, оксалат олова, смесь Мо (VI) и Мо (V), что приводит к непосредственному образованию синей формы ГПК без стадии образования желтой формы. [c.139]

    Методы инверсионной вольтамперометрии находят широкое применение для определения Sb в различных материалах, в том числе в чугунах, железе и сталях [1348, 1575], меди и медных сплавах [87, 116, 526, 569, 1348, 1575,1585], олове[221, 222, 224, 225, 242, 318, 526], алюминии [131, 132, 731, 1503], галлии и его солях [243, 245, 293, 303], арсениде галлия [243, 245, 246, 303, 586], кадмии и его солях [302, 318, 737], германии, тетрахлориде и тетрабромиде германия [105, 134], кремнии, двуокиси кремния, тетрахлориде и тетрабромиде кремния и трихлорсиланах [105, 133, 271, 310, 1503], цинке и цинковых сплавах [67, 737], серебре [605, 731J, свинце [833], теллуре [116], мышьяке [303], хроме и его солях [940], барии [125], ртути [528], висмуте [1348], никеле и никелевых сплавах [590], припоях [1348], полиметаллических рудах и продуктах цветной металлургии [116], растворах гидрометаллургического производства [138, 319, 1545], шламах [1175], ниобии и тантале и их соединениях [223, 2901, химических реактивах и препаратах [105], криолите [245, 586], материалах, используемых в злектронной [c.68]

    Недеструктивный активационный метод применяется для определения ЗЬ в алюминии [841, 1688] и его сплавах [945], нитриде алюминия [421], аскорбиновой кислоте [1630], асфальте [982], висмуте [830, 1204, 1239] и его сплавах с сурьмой [48, 313], воздушной пыли [884, 13131, галените [21], германии [633, 1384, 1385], горных породах [230, 427, 541, 949, 1061, 1289], графите [106, 1207], железе, чугуне и стали [135, 884, 1128, 1129, 1556, 1652], индии [12711, карбиде кремния [468], кремнии [212, 762, 932, 950, 989, 1217, 1361], тетрахлориде кремния [1462] и эпитаксиальных слоях кремния [580], меди [1002], морских [642, 1427] и природных водах [4, 1040], нефти и нефтепродуктах [991, 1517], олове [1305], поли-фенолах [983], почвах [1528], растительных материалах [1316, 1528], рудах [466, 1270], свинце [835 -837, 1205, 1505, 1506], стандартных образцах металлов [1316], теллуре [5], титане [68], хроматографической бумаге [1409], циркалое [1099], эммитерных сплавах [625], трифенилах [8771 и фториде лития [331]. Благодаря высокой чувствительности и вследствие того, что для анализа, как правило, требуется небольшое количество анализируемого материала, эти методы часто используются в криминалистической практике [884, 892, 12961. Имеются указания [965] аб использова- [c.74]

    Фосфор в силоксановой резине определяют в сернокислом растворе колориметрически в виде фосфорномолибденовой сини при Х = 680 нм [234, 235] после отделения двуокиси кремния. Бор определяют также в сернокислом растворе путем титрования ш елочью с маннитом [247]. Хром определяют сразу после выщелачивания содового плава в воде колориметрическим методом в виде хромата натрия. Определение олова основано на обратном комплексонометрическом титровании хлоридом цинка в среде с pH = 5 [223, 230]. Этот метод применим, если отсутствуют элементы, которые тоже титруются в этой среде. В противном случае необходимо олово отделить (см. разд. П. 10.3). [c.113]

    В основе прямого фотометрического метода определения кремния лежит реакция образования и последующего восстановления крем-немолибдата в слабокислом растворе с образованием синего комплекса (молибденовая синь) 82-94 Были опробованы различные восстановители в том числе хлорид олова, солянокислый гидроксиламин, сульфит натрия, гидрохинон и 1-амино-2-нафтол-4-сульфоно-вая кислота. В д1етоде, описанном на стр. 88, в качестве восстановителя рекомендуется хлорид олова. Метод предназначен главным образом для определения 0,01—0,5% кремния. [c.87]


Смотреть страницы где упоминается термин Кремний и олово, определение: [c.164]    [c.320]    [c.320]    [c.87]    [c.481]    [c.453]    [c.563]    [c.159]    [c.76]    [c.108]    [c.173]    [c.109]    [c.384]   
Руководство по анализу кремнийорганических соединений (1962) -- [ c.289 ]




ПОИСК





Смотрите так же термины и статьи:

Кремний определение

Олово определение



© 2025 chem21.info Реклама на сайте