Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузный фактор

    Электрокинетический потенциал зависит от тех же факторов, что и толщина диффузной части ДЭС. [c.79]

    Сравнение этого уравнения с определением фактора устойчивости (VI. 24) показывает, что стернческий множитель Р связан с величиной и, обратной толщине диффузного слоя, и радиусом частиц г соотношением [c.337]

    Но все-таки общее направление движения нефти в конечном счете определяется тектоникой, поэтому, если можно сп-орить о роли тех или иных синклинальных форм на фоне других тектонических структур, то ни в коем случае нельзя отрицать громадного значения и роли больших депрессий регионального характера, названных нами геосинклиналями. Ведь в них-то и происходило накопление первично битуминозного материала — так называемой материнской породы. Здесь под влиянием повышенной температуры и давления и при участии других факторов (анаэробных бактерий) происходило превращение органического материала в диффузно рассеянную в породе нефть, и отсюда началось ее движение вследствие разницы в удельном весе воды и нефти происходит их разделение и подъем последней вверх по восстанию. На своем пути поднимающаяся из геосинклиналей с места своей родины нефть встречала различного рода препятствия тектонического характера в виде литологических особенностей того или иного пласта, и в этих преградах происходило ее накопление и образование нефтяных залежей . Отрицая возможность накопления нефти в некоторых локальных структурных типах синклиналей, нельзя забывать огромного значения и роли геосинклиналей в образовании и аккумуляции нефти. [c.272]


    Основу другой модели газожидкостных реакторов составляют диффузные факторы. Их недостаток состоит в том, что параметры модели (скорость циркуляции, коэффициенты обратного перемешивания и т. д.) на самом деле являются некоторыми эффективными характеристиками потока, определяемыми из условия совпадения экспериментальных и расчетных кривых отклика [312—315]. [c.218]

    В совместных работах С. С. Духина и Б. В. Дерягина показано, что наступающая под влиянием того или иного фактора (наличие градиентов электрического, диффузного и гравитационного полей, конвективное движение в жидкости и т. д.) деформация двойного слоя обуславливает диффузионные потоки и возникновение электрического поля вокруг коллоидной частицы, радиус действия которого на несколько порядков превышает радиус действия недеформированного двойного слоя в тех же самых условиях. К аналогичному выводу несколько раньше пришел В. Г. Левич при рассмотрении движения капелек ртути. [c.6]

    Достаточная агрегатная устойчивость в суспензиях с неполярной средой обеспечивается при барьере в 6,5 ед. кТ. На основании этого можно сделать вывод о существенной роли электростатического фактора стабилизации в системах с добавками ПАВ. Однако остается непонятным, каким же образом повышение энергетического барьера способствует улучшению процесса депарафинизации К тому же и сами расчеты потенциальных кривых не отличаются достаточной строгостью остается неясным, каким образом можно оценить диффузность слоя и величину Л. Вызывает также сомнение приравнивание потенциала поверхности к -потенциалу. [c.31]

    Сравнение расчетного значения толщины диффузного слоя для фактических эмульсий = 2 10 см) с толщиной ионной сферы для модельной эмульсии в пресной воде (<г/ = 3 10 см) и с размерами частиц дисперсной фазы свидетельствует о том, что двойной ионный слой не может служить достаточно надежным фактором устойчивости нефтесодержащих вод. [c.37]

    Тепловое диффузное рассеяние рентгеновских лучей и фактор Дебая — Валлера [c.101]

    Диффузный двойной слой образован ионами, которые расположены в растворе на некотором расстоянии от поверхности электрода, которое больше радиуса иона. Такое расположение ионов, так же как и в ионной атмосфере, получается под влиянием двух противоположных факторов электростатических сил, которые стремятся притянуть ионы плотно к поверхности электрода, и теплового движения, которое стремится расположить ионы хаотически в растворе. В результате ионы, входящие в состав [c.301]


    Уменьшение -потенциала в области малых размеров пор м.о-жет обусловливаться также сжатием диффузного слоя, так как часть ионов диффузного слоя в этом, случае переходит в адсорбционный слой. Кроме структурных факторов, следует указать также и на роль химической природы твердой фазы, состава и концентрации полярных компонентов. [c.115]

    Форм-фактор. При выполнении расчетов теплообмена излучением между телами произвольной формы обычно удобно ввести величину, называемую форм-фактором. Форм-фактор / 12 определяется как доля суммарной энергии, излучаемой поверхностью 1 и падающей на поверхность 2 [131. Форм-фактор зависит от геометрии и положения поверхностей. При выводе выражения для форм-фактора предполагается, что излучающая поверхность является диффузным излучателем, т. е. она излучает равномерно по всем направлениям. [c.43]

    Таким образом, увеличивается с повышением Кроме того, расстояние, разделяющее капли в пределах агрегатов, зависит от полярности непрерывной фазы. Оно будет меньше в неполярной среде, чем в полярной, потому что диффузная природа двойного слоя в первой (Альберс и Овербек, 1960) такова, что силы притяжения будут больше. Эти факторы отражаются на поведении обоих типов эмульсии при низких скоростях сдвига при этом удобно изучать [c.285]

    Одним из факторов агрегативной устойчивости эмульсий является структурно-механический барьер — гелеобразно структурированные адсорбционные слои мылоподобных ИАВ на поверхности капель, сильно структурированные дисперсионной средой и обладающие повышенными структурномеханическими свойствами — вязкостью, упругостью, прочностью. Такие коллоидные адсорбционные слои представляют собой своеобразные пленочные (двухмерные) студни (гели), диффузно переходящие в золь с удалением от поверхности капель. Они обеспечивают высокую стабилизацию дисперсных систем, что особенно важно при получении концентрированных и высококонцентрированных эмульсий. Таков (по П. А. Ребиндеру) механизм стабилизирующего действия мыл, а также белков и других высокомолекулярных стабилизаторов. [c.193]

    Очевидно, что уменьшение -потенциала, наблюдающееся в этом исследовании после введения поправок на поверхностную проводимость и вязкость для области очень тонких капилляров, следует отнести за счет влияния других факторов, рассмотренных нами ранее, а именно изменения величины диэлектрической проницаемости, взаимопроникновения диффузных ионных слоев, электроосмотического противотока и т. д., что не было учтено. [c.113]

    Концентрационная коагуляция наблюдается е золях с высоким ф-потенциалом частиц при увеличении концентрации электролита, т. е. ионной силы раствора. Этот механизм коагуляции осуществляется при действии индифферентных электролитов, не способных к специфической адсорбции. Добавление таких электролитов не изменяет величину ф-потенциала во внутренней обкладке двойного слоя. В этом случае коагуляцию вызывают электростатический эффект сжатия двойного электрического слоя и связанное с ним умень-щение -потенциала (см, рис. 25.3 27,5). Сжатие диффузного слоя является следствием двух причин I) перемещения части противоионов из диффузного слоя в адсорбционный слой, что ведет к дополнительной компенсации -потенциала 2) подавления диффузии противоионов и уменьшения размытости диффузного слоя за счет увеличения ионной силы дисперсионной среды. Этот фактор является преобладающим для систем с сильно заряженными частицами. [c.433]

    Экспериментальные данные показывают, что зависит от pH раствора, присутствия посторонних ионов, диффузности двойного слоя, наличия в электролите поверхностно активных веществ. Влияние всех этих факторов сказывается на константе а, изменяя ее величину. Однако рекомбинационная теория не объясняет этих явлений. [c.308]

    От каких факторов зависит толщина диффузной части двойного электрического слоя Оцените эту величину для ртутного электрода, помещенного 0,01 н. водный раствор МеС1 при 25°С. [c.229]

    Всякая коагуляция под влиянием различных факторов вызывает изменения в двойном электрическом слое частиц, при этом диффузный слой мицеллы сжимается до толщины в одну молекулу за счет перехода ионов в адсорбционный слой. [c.234]

    Другим основным фактором устойчивости неорганических гидрозолей является потенциал поверхности, удерживающий вокруг коллоидных частиц диффузный слой ионов. Ионы этого слоя гидратированы и создают вокруг частиц гидратные оболочки, которые заслоняют (экранируют) частицы от действия молекулярных сил сцепления и стабилизуют коллоидную систему. Если она не гидрозоль, а органозоль, ее стабилизация осуществляется главным образом за счет оболочек дисперсионной среды (сольватных оболочек,) удерживаемых вокруг частиц адсорбционными силами. Однако наличие одних только сольватных оболочек из молекул среды еще недостаточно для придания гетерогенной системе значительной агрегативной устойчивости. Необходим третий компонент — стабилизатор в виде электролита (полиэлектролита). Его роль заключается, во-первых, в понижении общей поверхностной энергии системы за счет адсорбции ионов и, во-вторых, в создании защитных ионно-сольватных слоев в составе каждой мицеллы (см. гл. V). [c.130]


    Другим фактором, определяющим вероятность пересечения, является промежуток времени, когда молекула сохраняет конфигурацию, соответствующую точке пересечения. Этот промежуток определяется скоростью прохода, задаваемой избытком энергии молекулы над уровнем, необходимым для пересечения. Часто спектр, имеющий диффузные участки вследствие предиссоциации, вновь становится линейчатым в коротковолновой области. [c.54]

    Б газки по природе образования к холодным трещинам ламинарные (слоистые) трещины. Наибольшую склонность к ламинарным трещинам проявляют угловые швы (врезные патрубки, ребра жесткости). Объемное напряженное состояние в этих констуктивных элементах, стесненность деформаций приводят к слоистому отрыву мегатла, Встественно, все это происходит при совместном действии вышеназванных факторов (наличие легкоплавких включений, диффузного водорода и др,), [c.178]

    Совместное действие упомянутых и ряда других факторов может привести к тому, что кривые кинетики промывки в координатах У .ж1Уо — Си Со будут иметь различную форму [268, 269]. На рис. УМ9 в качестве примера показаны две такие кривые а) нормальная. кривая, включающая три стадии, которые могут интерпретироваться как две последовательные стадии поршневого вытеснения, сопровождаемого диффузней, и стадия диффузии  [c.248]

    В оби ем случае -иотециал всегда меньше потенциала диффузионного слоя срй п это различие тем больше, чем меньше протяженность диффузионной части двойного электрического слоя (рис. IV. 10), т. е. его толш,ииа X. Таким образом, все факторы, влияюш,ие на толш,ниу диффузного слоя, изменяют значение -потенциала. Эту связь можио проследить, если сопоставить уравнении (11.97) и (II. 101), полученные для двойного электрического слоя в разд. П. В  [c.218]

    В случае эмульсий (в отличие от золей) следует рассматривать два фактора, прежде чем решить, применима ли указанная выше формула, а именно возмояшость искажения капель при их взаимодействии и наличия диффузных слоев внутри самих капель. Если капли стабилизируются вследствие отталкивания двойных слоев, то сильное сближение способствует расплющиванию поверхностей потенциальный энергетический барьер, противодействующий соприкосновению капель, будет больше, чем вычисленный при предположении недеформированных сфер, при этом эффективный радиус кривизны увеличивается. Математического истолкования этого эффекта еще не существует. Влияние внутреннего диффузного слоя в масляной и водной фазах было рассмотрено Вервеем и Овербеком. Так как некоторая часть поверхностного заряда нейтрализуется внутренними противоионами, то поверхностный потенциал уменьшается но па отталкивание между каплями, благодаря взаимодействию их внешних двойных слоев, не влияет наличие внутренних двойных слоев. [c.98]

    Коагуляцию могут вызвать все факторы, которые способствуют понижению величины алектрокинегического потенциала частиц и сольватации (дегидратации) ионов диффузного слоя, что приводит к сжатию диффузной части двойного слоя и к понижению механической прочности сольватных оболочек, разъединяющих частицн. [c.33]

    Для малорастворимых твердых веществ можно получить отражательный спектр. При интенсивном измельчении твердого вещества уменьшается часть светового потока, отражающаяся от его поверхности, а большая часть падающего света проникает и глубь вещества. Эта доля частично поглощается, а частично, после м-ногократного отражения снова диффузно выделяется через поверхность вещества наружу. При таком внутреннем отражении ослабляются участки спектра, связанные с абсорбцией света молекулами. Для дальнейшего уменьшения поверхностного отражения порошкообразное вещество можно смешать с веществом, индифферентным в используемой спектральной области (белый стандарт), и получить известную аналогию с раствором вещества. Отражательная спектроскопия пригодна также для получения спектров поглощения малорастворимых веществ. Этот метод применяют в основном при исследовании состава красок и строения неорганических твердых соединений. Абсорбция света окрашенными катионами зависит от различных факторов от координационного числа, симметрии молекулы и межатомных расстояний в кристаллической решетке соединения. По изменению абсорбции можно сделать выводы об изменениях, происходящих в решетке соединения при включении посторонних ионов. [c.355]

    В случае ионогенных ПАВ в дополнение к дегидра-таци 1 действует фактор, связанный с изменением состояния двойного электрического слоя, образованного на поверхности ионами адсорбированного ПАВ. При введении электролитов повышается ионная сила раствора и происходит сжатие диффузной части двойного электрического слоя, в результате чего часть противоионов входит в плотный штерновский слой, т. е. происходит понижение эффективной степени диссоциации поверхностно-активного электролита. Благодаря этому понижается электростатическое отталкивание, препятствующее вхождению поверхностно-активных ионов в одноименно заряженный адсорбционный слой. [c.24]

    Наиболее широко учение о структурно-механическом факторе стабилизации развито П. А. Ребиндером. Согласно П. А. Ребиндеру, стабилизующими свойствами обладают, насыщенные или близкие к насыщению адсорбционные слои ориентированных молекул поверхностно-активных веществ, образующие двухмерные структуры. Особенно сильным стабилизующим действием обладают коллоидные адсорбционные слои, являющиеся своеобразными пленочными (двухмерными) tyднями — лиогелями, сильно сольватированными дисперсионной средой и диффузно переходящими в межмицеллярную жидкость. Веществами, способными образовывать такие слои, являются белки и щелочные мыла в гидрозолях, в олеозолях — смолы, мыла поливалентных металлов и липоиды. [c.283]

    Особенно чувствителен к этим факторам и-потенциал. Зависимость -потенциала золя от температуры и разведения V можно выразить графически (рис. 25.2). На участке / кривой в области умеренного повышения температуры ц-потенциал растет. Это можно объяснить тем, что с повышением температуры увеличивается кинетическая энергия противоионов в мицеллах золя. Преодолевая электростатические и ван-дер-ваальсовы силы притяжения, часть противоионов переходит из адсорбционного в диффузный слой. Увеличивается толщина последнего, а вместе с этим и С-потенциал устойчивость золя несколько возрастает. Второй участок кривой характеризуется понижением -потенциала. Это можно истолковать следующим образом при дальнейшем повышении температуры процессы десорбции ионов захватывают уже более глубокие области двойного электрического слоя начинается отрыв ионов от внутренней обкладки ДЭС, т. е. часть потенциалобразующих ионов отрывается от твердой поверхности и переходит в раствор. Это приводит к понижению ф-по-теициала и, как следствие, к уменьшению и С-потенциала. Устойчивость золя также понижается. [c.400]

    Эритроциты в крови можно по ряду свойств рассматривать так же, как частички гидрофобной эмульсии. На их поверхности адсорбированы молекулы белков, аминокислот и ионы электролитов. Все они сообщают эритроцитам определенный отрицательный заряд, а противоионы создают некоторый диффузный слой. При различных патологических процессах в организме, когда в кровн увеличивается содержание некоторых видов белков (либо особого глюкопротеида, относящегося к а-глобулинам, либо при инфекционных заболеваниях Y-глoбyлинoв), происходит процесс, очень напоминающий ионообменную адсорбцию место ионов электролитов на поверхности эритроцитов занимают белки, заряд которых ниже, чем у суммы замещенных ими ионов. В результате заряд эритроцитов понижается, они быстрее объединяются и оседают (ускоряется реакция оседания эритроцитов — РОЭ). Этот процесс зависит еще от ряда факторов содержания других белковых фракций и мукополисахаридов, концентрации эритроцитов в крови, наличия в крови микробов, наконец, расположения сосуда, в котором наблюдается РОЭ (в частности, скорость ее выше в наклонно расположенном капилляре). Оседание эритроцитов протекает сходно с процессом седиментации гидрофобного коллоида. Как показали исследования при помощи микрокинематографии (Кигезен), к имеющимся в крови агрегатам и монетным столбикам присоединяются отдельные эритроциты укрупнившиеся агрегаты оседают вначале быстро, а потом медленнее, так как в нижних частях капилляров их расположение становится настолько плотным, что частично сохранившиеся у них заряды начинают в большей мере противодействовать сближению частиц. Структура этого осадка напоминает губку чтобы его уплотнить, необходимо выжать оттуда воду, причем чем плотнее осадок, тем труднее это достигается. Поэтому в клинических исследованиях обычно не ожидают завершения оседания эритроцитов, а регистрируют результаты спустя 1—2 ч после начала реакции. Учитывая, что скорость процесса меняется на разных этапах, было предложено изучение его динамики измерением величины оседания эритроцитов каждые 15—30 мин (так называемая фракционная РОЭ). Этот метод представляет значительный интерес и находит широкое применение. [c.167]

    В этой области приобретают значение такие факторы, как кри визна ДЭС (рассмотренная нами теория относилась к плоскому слою, г б) и перекрытие диффузных слоев (при соизмеримости б и г). [c.228]


Смотреть страницы где упоминается термин Диффузный фактор: [c.236]    [c.146]    [c.332]    [c.379]    [c.483]    [c.55]    [c.164]    [c.102]    [c.77]    [c.138]    [c.308]    [c.117]    [c.274]    [c.181]    [c.207]    [c.238]   
Смотреть главы в:

Основы химии полимеров -> Диффузный фактор


Основы химии полимеров (1974) -- [ c.236 , c.238 ]




ПОИСК





Смотрите так же термины и статьи:

Тепловое диффузное рассеяние рентгеновских лучей и фактор Дебая— Валлера



© 2025 chem21.info Реклама на сайте