Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двойной внешний слой

    Между металлом и внешним пространством возникает градиент потенциала, стремящийся задержать эмиссию электронов. В конечном счете устанавливается равновесное состояние, при котором, однако, металл притягивает электроны внешнего пространства к своей поверхности, а последние отталкивают электроны металла от поверхности вглубь металла. В итоге в поверхностных слоях металла образуется избыток положительных ионов и создается двойной электрический слой по обе стороны межфазной границы. [c.184]


    В рассмотренном случае (ртуть в растворе КС1) двойной электрический слой не образуется. При сообщении этому электроду некоторого заряда от внешнего источника электрод приобретает некоторый потенциал, который может изменяться непрерывно в результате изменения сообщаемого электроду заряда. При этом плотность заряда на поверхности электрода непрерывно изменяется, но какой-либо электрохимический процесс отсутствует. Это свойство данный электрод сохраняет только в определенном интервале значений потенциала. Электроды подобного типа называются идеально поляризуемыми. [c.612]

    На обратимом водородном электроде двойной электрический слой на платине построен таким образом, что поверхность платины заряжена отрицательно, а внешняя обкладка двойного слоя образована ионами гидроксония. При катодной поляризации, т. е. при подводе к поверхности электрода электронов, ионы гидроксония, подходящие к поверхности электрода, разряжаются не сразу, а предварительно включаются в двойной слой. Вследствие этого поверхностная плотность заряд,з двойного слоя и потенциал электрода увеличиваются, что приводит к растяжению связей между протоном и молекулой воды, т. е. к деформации иона гидроксония и его активации. [c.625]

    На рис. У-2 показано строение двойного электрического слоя для растворов электролитов средней концентрации. Отрицательно заряженные ионы адсорбируются на поверхности твердого тела, образуя тонкий внутренний слой. Положительно заряженные ионы образуют внешний слой, причем концентрация этих ионов в нем убывает в направлении от поверхности твердого тела. Такой характер внешнего слоя объясняется взаимным влиянием электростатического поля, концентрирующего положительно заряженные ионы вблизи внутреннего слоя, и теплового движения молекул, равномерно распределяющего эти ионы во всем объеме жидкости. [c.192]

    Под толщиной двойного электрического слоя следует понимать расстояние между поверхностью твердого тела, на котором адсорбированы ионы одного знака, и центром тяжести ионов другого знака, находящихся во внешнем слое. На толщину двойного электрического слоя оказывают влияние различные факторы, в частности свойства твердого тела, концентрация электролитов, валентность ионов, наличие поверхностно-активных веществ. Так, толщина двойного электрического слоя уменьшается с увеличением концентрации электролита при этом концентрации одновалентного иона калия, двухвалентного иона бария и трехвалентного иона алюминия, производящие одинаковое действие, приблизительно относятся как 800 25 1. [c.192]


    Если металл с катионным двойным электрическим слоем, соответствующим отрицательному потенциалу металла относительно раствора, подвергнуть анодной поляризации, т. е. отнять у него с помощью внешнего источника постоянного электрического тока [c.161]

    Атомы серы и фосфора в отличие от атома азота имеют во внешнем слое свободные -орбитали, которые в известной мере заполняются неподеленными электронными парами атомов кислорода. Таким образом, связи серы и фосфора с кислородом средние между одинарными и двойными их электронное строение лучше передают формулы [c.98]

    Ионы раствора, образующие внешний двойной электрический слой, подвержены действию сил электрического поля зарядов на металле, а также дезориентирующих сил теплового движения. В результате этого ионы притягиваются частично к поверхности, образуя вблизи электрода слой Гельмгольца, и частично диффузно располагаются в пространстве в виде слоя Гуи [2]. [c.36]

    Помимо наведенных по краям капельки зарядов, индуцированных внешним электрическим полем и равных и противоположных по знаку, взвешенная в нефти капелька воды может иметь собственный избыточный положительный или отрицательный заряд. Такой заряд возможен при возникновении вокруг капельки двойного электрического слоя [12]. [c.51]

    Поляризация частиц под влиянием электрического поля происходит прежде всего вследствие деформации двойного ионного слоя, окружающего частицы. В результате теплового движения и адсорбции ионы распределяются в межфазном объеме диффузно, симметрично окружая частицу, если последняя находится вне действия внешнего электрического поля. Если расстояние между частицами/г больше, чем удвоенное расстояние, на котором происходит нейтрализация зарядов, то частицы не будут электростатически взаимодействовать между собой. При перекрытии ионных сфер частицы электростатически отталкиваются. [c.7]

    Для получения наиболее простого уравнения, связывающего скорость относительного движения фаз с параметрами, определяющими свойства дисперсионной среды (вязкость, диэлектрическая проницаемость), двойного электрического слоя ( -потенциал) и внешнего электрического поля (напряженность), необходимо задаться некоторыми ограничениями 1) толщина двойного электрического слоя значительно меньще радиуса пор, капилляров твердой фазы (радиуса кривизны поверхиости твердой фазы) 2) слой жидкости, непосредственно прилегающий к твердой фазе, неподвижен движение жидкости в порах твердой фазы ламинарное и подчиняется законам гидродинамики 3) распределение зарядов в двойном электрическом слое не зависит от приложенной разности потенциалов 4) твердая фаза является диэлектриком, а жидкость проводит электрический ток. [c.220]

    При соприкосновении с водой поверхностные атомы твердого тела подвергаются воздействию силового поля молекул воды, которые благодаря своему малому размеру как бы внедряются в кристаллическую решетку твердого тела. Это взаимодействие, которое принято называть гидратацией, может быть настолько сильным, что ослабленные связи атома металла со своими внешними (валентными) электронами нарушаются и атом металла получает возможность покинуть узел кристаллической решетки и перейти в воду. Так образуется ион-атом, несущий положительный заряд. Перешедший в раствор ион-атом гидратируется, т. е. окружается ориентирующимися вокруг него молекулами воды. При этом оставшиеся в металле электроны являются носителями отрицательного заряда. Таким образом,у поверхности металла образуется двойной электрический слой, характеризующийся разностью (скачком) потенциалов между поверхностью металла и слоем раствора, прилегающим к поверхности металла. При достижении определенной величины скачка потенциала дальнейший переход ион-атомов металла в раствор прекращается. Очевидно, что способность металла отдавать в раствор свои ион-ато-мы под воздействием силового поля молекул воды определяет различную величину скачка потенциалов в двойном электрическом слое. [c.29]

    Один из механизмов связан с различной скоростью перехода разноименно заряженных частиц.из одной фазы в другую. Простейший случай образования двойного электрического слоя по такому механизму — испускание электронов поверхностью нагретых металлов (электронная эмиссия). В этом случае сам металл в сколько-нибудь значительном количестве не испаряется, эмиссия же электронов происходит легко, и поверхность металла заряжается положительно. Между поверхностью металла и окружающим ее внешним пространством возникает разность потенциалов. По достижении равновесного состояния распределение частиц в обеих фазах неравномерное положительно заряженный металл притягивает электроны из внешней среды, а они отталкивают электроны металла от его поверхности внутрь. В результате в поверхностном слое металла образуется избыток положительно заряженных ионов, а на поверхности внешнего пространства— избыток электронов. Такое распределение разноименно заряженных частиц и создает двойной электрический слой. [c.165]


    Дальнейшее развитие теории строения двойного электрического слоя связано с представлениями о внутреннем и внешнем слое в плотной части двойного электрического слоя и о роли молекул растворителя и адсорбированных частиц при его образовании (А. Н. Фрумкин, Б. Б. Дамаскин, Д. С. Грэм и др.). [c.104]

    Под действием внешнего электрического поля происходит поляризация двойного ионного слоя в мицелле вследствие этого симметричное расположение ионов двойного слоя нарушается, и коллоидная частица перемещается к электроду, имеющему противоположный по знаку заряд. [c.44]

    Роль электроповерхностных неравновесных сил в различных процессах, вероятно, весьма значительна. Деформация двойного электрического слоя может происходить не только под действием внешнего электрического поля (этот случай будет рассмотрен в разд. 5 настоящей главы), но и при действии конвективных потоков жидкои среды, гравитационного поля, поля центробежных сил, ультразвукового поля, механических вибраций, броуновского движения. В частности, [c.197]

    Распределение зарядов в двойном слое не зависит от напряженности прилагаемого электрического поля, и внешняя разность потенциалов просто накладывается на поле двойного электрического слоя. [c.198]

    Исходя из этих положений, выведем уравнение, связывающее -потенциал со скоростью электрофореза или электроосмотического переноса. Для этого представим себе у твердой поверхности двойной электрический слой, находящийся под действием разности электрических потенциалов, приложенной тангенциально к межфазной границе. Такой слой изображен на рис. VH, 19а. Находящиеся в жидкости ионы (противоионы) под влиянием внешнего электрического поля стремятся передвинуться вправо к полюсу, несущему противоположный заряд (в данном случае к катоду). Понятно, что вблизи твердой поверхности вместе с ионами стремится передвинуться вся жидкость, в которой находятся эти ионы. Наоборот, под влиянием этого же поля твердая поверхность с закрепленными на ней ионами (потенциалопределяющими ио- [c.198]

    Согласно исходным положениям, электрофорез представляет собой явление, близкое электроосмосу. И для электрофореза, и для электроосмоса, как мы приняли ранее, перемещение жидкости по отношению к поверхности твердой фазы определяется силами, действующими на двойной электрический слой. Именно исходя из этих предпосылок нами и было выведено уравнение Гельмгольца — Смолуховского, выражающее зависимость скорости электрофореза от градиента потенциала внешнего поля. Однако применение уравнения (VII, 42) для описания электрофоретических явлений ограничено следующими условиями. Во-первых, толщина двойного слоя (обычно характеризуемая величиной 1/х) должна быть мала, по сравнению с размером частицы. Во-вторых, вещество частицы не должно проводить электричества, а поверхностная проводимость на межфазной границе должна быть настолько малой, чтобы она практически не влияла на распределение внешнего электрического поля. [c.203]

    При выводе этого уравнения коллоидная частица принята эквивалентной сферической частице и введена поправка на так называемое электрофоретическое запаздывание (торможение), вызванное влиянием внешнего поля на двойной электрический слой. Под действием, этого, поля противоионы передвигаются в направлении, противоположном движению частицы, сообщая.этим самым движение окружающей жидкости в том же направлении. Это приводит к тому, что частица перемещается не в покоящейся, а в движущейся жидкости, в результате чего электрофоретическая скорость уменьшается. [c.203]

    Частицы золя могут приобретать дипольные моменты, противоположно направленные внешнему электрическому полю вследствие деформации двойного-электрического слоя в этом поле. Очевидно, при этом центры тяжести положительных и отрицательных зарядов частицы смещаются относительно друг друга, т. е. частицы поляризуются, что приводит к возрастанию диэлектрической проницаемости. Подобный эффект характерен для всех коллоидных систем и раствО ров высокомолекулярных электролитов. [c.222]

    Для пептизации внешней энергии на перевод осадка в раствор не требуется, так как свежий осадок представляет собой первичные частицы, очень непрочно слипшиеся друг с другом только в отдельных места х. Для преодоления сил сцепления "в систему достаточно ввести пептизатор, диффундирующий к поверхности частиц и образующий на ней двойной электрический слой или сольватную оболочку. [c.240]

    Этот на первый взгляд трудно понятный вывод объясняется, как мы видели, тем, что по мере роста фо-потенциала увеличивается притяжение противоионов к поверхности частицы. Таким образом, параллельно с ростом заряда внутренней обкладки двойного электрического слоя и потенциала поверхности усиливается и экранирование внешнего поля этой обкладки противоионами. Поэтому дальнейший рост напряженности электрического поля в периферийных частях ионных атмосфер и сил взаимодействия обеих частиц прекращается. Таким образом, если коллоидные частицы заряжены достаточно сильно, то их взаимодействие зависит только от заряда противоионов, экранирующих действие внутренней обкладки двойного слоя и обусловливающих его толщину, [c.292]

    Дальнейшее развитие теории двойного электрического слоя было дано в работах Фрумкина и его школы, Бокриса, Деванатхана, Есина, Мюллера, Парсонса, Эршлера и др. Наибольшее признание и распространение получила модель двойного электрического слоя, предложенная Грэмом (1947). Согласно Грэму, обкладка двойного электрического слоя, находящаяся в растворе, состоит не из двух, как предполагал Штерн, а из трех частей. Первая, считая от поверхности металла, называется внутренней плоскостью Гельмгольца, в ней находятся лишь поверхностно-активные ноны либо если их нет в растворе, молекулы растворителя-. В первом случае заряд плоскости равен <71, во втором — нулю ( 71 = 0), потенциал ее, отнесенный к раствору, обозначается ч( рез г 5). Следующая, удаленная от поверхности металла на расстояние, до которого могут подходить ионы (центры их заряда) в процессе теплового движения, называется внешней плоскостью Гельмгольца ее общий заряд, отнесенный к единице поверхности, равен /2, а потенциал плоскости -фг- [c.271]

    Наличие внутренней и внешней частей граничного слоя может быть объяснено резкими различиями в структурах адсорбционно (внутренней части граничного слоя) и осмотически связанной воды. Первая подчинена геометрии подложки и гид-ратационным характеристикам ее активных центров. Вторая, если учесть, что в диффузную часть двойного электрического слоя глинистых частиц переходит менее 2% обменных катионов [124], может быть в первом приближении описана структурой очень разбавленного раствора электролита. Переход от слоя адсорбционно связанной к слою осмотически связанной воды осуществляется через промежуточный (внешняя часть граничного слоя) переходный слой конечной толщины [125]. [c.42]

    За пределами строгой количественной теории Дерягина остались такие факторы устойчивости, как сольватация поверхности ч1стиц и структурно-механические свойства адсорбционных слоев. Один из возможных путей учета сольватации в рамках теории устойчивости предложен Ю. М. Глазманом. По его мнению, электростатическое отталкивание соль-ватированных частиц можно рассматривать с позиций расположения внутренней обкладки двойного ионного слоя на внешней стороне сольватного слоя, что равносильно увеличению радиуса действия электростатических сил. Сольватные слои, по определению Дерягина, представляют собой пограничные с дисперсной фазой области среды, обладающие отличными от остальной среды механическими и термодинамическими (или теми и другими) свойствами. [c.8]

    Наличие у частиц дисперсной фазы собственного электрического заряда объясняет их поведение во внешнем электрическом поле. Так, при наложении неоднородного электрического поля на дисперсии с полярной средой и диэлектрическими частицами вследствие поляризации двойного ионного слоя или в сильных полях частиц возникают диполофоретичес-кие или пондеромоторные силы [26, 27,47], которые вызывают направленное движение частиц, что может быть использовано при разделении судовых нефтесодержащих вод. [c.60]

    При виеилних воздействиях на ССЕ (напрнмер, механических) возможен разрыв двойного электрического слоя и изменение баланса зарядов в ССЕ в результате изменения геометрических размеров ССЕ. Плоскость скольжения обычно проходит по диффузному слою, и часть его компонентов переходит в дисперсионную среду. В результате возникает разность потенциалов между подвижной (диффузной) и неподвижной (адсорбционной) частью двойного электрического слоя, которую принято называть электрокинетическим (дзета) потенциалом — . Значение -потенциала зависит от отношения hjr ССЕ. При hjr- O - 0, а при /i/r- oo значение -потенцнала увеличивается. Иными словами, значение -потенцнала зависит от внешних возде11-ствий и может ими регулироваться в значительных пределах. [c.159]

    Механизм обесцинкования не получил еще удовлетворительного объяснения. Имеются две точки зрения. Первая предполагает, что первоначально протекает коррозия всего сплава, а затем медь осаждается на поверхности из раствора с образованием пористого внешнего слоя. Согласно второй, цинк, диффундируя к поверхности сплава, преимущественно растворяется прИ -а,том поверхностный слой обогащается медью. Каждую из этих гипотез можно успешно применить для объяснения явлений, наблюдающихся в определенных случаях обесцинкования. Однако накопленные факты свидетельствуют, что второй механизм применим намного чаще. Пикеринг и Вагнер [17, 18] предположили, что объемная диффузия цинка происходит вследствие образования поверхностных вакансий, в частности двойных. Они образуются в результате анодного растворения, а затем диффундируют при комнатной температуре в глубь сплава (коэффициент диффузии для дивакансий в меди при 25°С О = 1,3-10" см с) [17], заполняясь преимущественно атомами цинка и создавая градиент концентраций цинка. Данные рентгеновских исследований обесцинкованных слоев Б-латуни (сплав 2п—Си с 86 ат. % 2п) и -у-латуни (сплав 2п—Си с 65 ат. % 2п) показали, что в обедненном сплаве происходит взаимная диффузия цинка и меди. При этом образуются новые фазы с большим содержанием меди (например, а-латунь), и изменение состава в этих фазах всегда идет в сторону увеличения содержания меди. Как отмечалось ранее, аналогичные закономерности наблюдаются в системе сплавов золото— медь, коррозия которых идет преимущественно за счет растворения меди. Растворения золота из этих сплавов не обнаруживают. В результате коррозии на поверхности возникает остаточный пористый слой сплава или чистого золота. Скопления двойников, часто наблюдаемые в полностью или частично обесцинкованных слоях латуни, также свидетельствуют в пользу механизма, связанного с объемной диффузией [19]. Это предположение встречает ряд возражений [20], однако данные рентгеноструктурного анализа обедненных цинком слоев невозможно удовлетворительно объяснить, исходя из концепции повторного осаждения меди. Хотя предложен ряд объяснений ингибирующего действия мышьяка, сурьмы или фосфора на обесцинкование а-латуни (но не Р-латуни), механизм этого явления нельзя считать полностью установленным. [c.334]

    Уравнения электрокапиллярной кривой названы так потому, что выражаемые ими зависимости экспериментально проверялись Лнпиманом с иомощь о прибора, называемого капиллярным электрометром (рис. П. 9). При исследовании зависимости поверхностного натяжения от потенциала двойного электрического слоя в качестве одной из фаз наиболее удобно применять металлическую ртуть, поверхиостиое натяжение которой легко измерить, например, капиллярным методом, и в то же время удобно изменять межфазный потенциал с помощью внешнего источника тока. Кроме того, ртуть являете. почти идеально поляризуемым электродом, т. е. таким электролом, на котором не протекают электродные реакции при прохол., еини тока, и поэтому изменение заряда электрода вызывает только изменение его потенциала. Это обусловлено тем, что благородные металлы почти совсем не отдают своих ионов в раствор. Малое содержание их в растворе делает невозможным и обратную реакцию (восстановления). [c.50]

    Штерн предложил р ассматривать двойной электрический слой состоящим из двух частей внутренней (плотный слой Гельмгольца) и внешней (диффузный слой). Это позволило использовать теорию Гуи — Чепмена для описания строения внешней части слоя, где можно пренебречь адсорбционными силами и размерами иоиов. Внутреннюю часть Штерн представил как адсорбционный мопоионный слой толщиной не менее двух радиусов ионов (см. рис. 11.13). Введенный Штерном потенциал часто называют штерновским. [c.60]

    Коагуляция лиофобных дисперсных систем может происходить в результате различных внешних воздействий, например при механичес1юм воздействии (ультразвука), действии электрического поля, при нагревании или замораживании системы. Коагуляция лиофобных золей может быть вызвана также их сильным разбавлением или концентрированием. Наиболее часто коагуляция дисперсных систем происходит при добавлении электролитов. Различают два типа электролитной коагуляции коллоидных систем 1) нейтрализационную, происходящую в результате снижения поверхностного потенциала частиц 2) конпен-трационную, протекающую вследствие сжатия диффузной части двойного электрического слоя (потенциал поверхности в этом случае не изменяется). [c.162]

    Электронная эмиссия была доказана и при других химических реакциях. На основании этого предложена модель поверхности металлов. Она состоит из двойного электрического слоя с внешним отрицательным и внутренним положительным зарядами. Ч< ез этот слой для выхода на поверхность должны диффундировать внvтpeн- [c.127]

    По ЭТОЙ причине внешняя фаза, играющая роль одной из пластин двойного электрического слоя, прижимает с силой / жидкость, в которой находится диффузная часть двойного слоя, и давление в жидкости становится выше давления, обусловленного только силами вандерваальсова притяжения. Согласно (6.2), это приводит к повышению химического потенциала жидкости, причем этот эффект не зависит от знака внешнего заряда, так как в соответствии с (6.14) / пропорциональна квадрату е. Поэтому, если фаза заряжается вблизи точки нулевого заряда, химический потенциал всегда возрастает независимо от знака заряда. [c.173]

    Электрофорез [1—3]. Движение заряженных частиц под влиянием внешнего электрического поля и находящихся во взвешенном состоянии в неподвижной жидкости называется электрофорезом. Это явление можно представить себе следующим образом. Частицы жидкости окружены двойным электрическим слоем. При приложении электрического поля распределение зарядов частиц в дуффузном слое нарушается вследствие смещения их по отношению к частице и непрерывного обмена ионными атмосферами вокруг частиц. В то же время сами частицы под действием электрического поля движутся по направлению противоположно заряженного полюса. Измерив скорость движения частиц и зная градиент потенциала приложенногс электрического поля, можно рассчитать электрофоретическую подвижность частиц С/эф (так назьшают путь, проходимый частицей за одну секунду в поле с градиентом потенциала 1 в/см). Тогда [c.168]

Рис. XII.I Строение двойного электрического слои. Кружками со знаком минус показаны специфически адсорбированные анноны со знаком плюс — гидратированные катионы штриховыми кружка-ми —гидратные оболочки.вне диффузионного слоя кружки со стрелками—диполи воды ф и 11—виут-ренниб н внешний аотенциалы, Рис. XII.I <a href="/info/602564">Строение двойного электрического слои</a>. Кружками со знаком минус показаны специфически адсорбированные анноны со знаком плюс — гидратированные катионы штриховыми кружка-ми —<a href="/info/19972">гидратные оболочки</a>.вне <a href="/info/10582">диффузионного слоя</a> кружки со стрелками—<a href="/info/3891">диполи воды</a> ф и 11—виут-ренниб н внешний аотенциалы,
    Внешнее электрическое поле действует на заряды двойного электрического слоя коллоидная частица и диффузные протнво-ноны перемещаются в сторону электродов с противоиоложными знаками. Смещение дисперсной фазы относительно дисперсионной среды происходит по поверхности скольжения. Направление движения частиц дисперсной фазы определяет их знак заряда. Измерив линейную скорость движения и частиц (или границы раздела золь — дисперсионная среда) в электрическом поле, можно рассчитать потенциал на поверхности скольжения — электрокинетический потенциал по уравнению Смолуховского (VI.1)  [c.96]

    Мицеллы ионогенных ПАВ можно рассматривать как ультрамикрокапельки углеводорода, окруженные двойным электрическим слоем ионов (ДЭС). Внутреннюю обкладку ДЭС образуют ионизированные полярные группы молекул ПАВ, а внешняя обкладка состоит из эквивалентного количества противоионов, значительная часть которых (до 80% и более) связана с поверхностью мицеллы и образует плоскую (штерновскую) часть ДЭС. Остальные противоионы находятся в диффузном слое. [c.171]

    Влияние неравновесных электроповерхностных сил. Выше были рассмотрены равновесные поверхностные силы, действующие у межфазной границы и способные препятствовать сближению двух одноименно заряженных частиц. В послед- ие годы Б. В. Дерягин и С. С. Духин проанализировали действие электропо- верхностных сил в системах, в которых имеют место нарушения термодинамического равновесия. Они установили, что деформация двойного электрического слоя, вызванная внешним электрическим полем или конвективным движением жидкости, приводит к образованию такого электрического поля, радиус действия которого часто на несколько порядков превосходит радиус действия не-дефммированного слоя в тех же условиях. [c.197]

    Следует заметить, что при выводе уравнений (VII, 42) и УП,44) был сделан ряд упрощений и не вполне обоснованных допущений. Прежде всего, как уже было указано при рассмотрении строения двойного электрического слоя, схему, из которой мы исходили, нельзя считать удовлетворительной. Двойной электрический слой, согласно новейшим представлениям, надо представлять не плоскопараллельным конденсатором, а конденсатором, одна из обкладок которого состоит из диффузно распределенных ионов. Часть этих ионов -находится в приповерхностном слое и отстоит от твердой поверхности на меньшем расстоянии, чем плоскость скольжения. В результате этого электрокинетический потенциал соответствует не всему заряду на поверхности стенки, а разности между общим поверхностным зарядом и зарядом всех ротивоионов, находящихся в приповерхностном слое. Поведение такого слоя при электрофорезе или электроосмосе следует представлять себе так, как это показано на рис. VII, 19 б. Правда, такое представление о двойном электрическом слое не обесценивает приведенный вывод, так как этот слой по-прежнему можно рассматривать как электрический конденсатор. Возникает лишь вопрос о том, насколько допустимо при количественных выводах приравнивать расстояние I, на котором происходит изменение скорости течения жидкости в двойном слое, к усредненному расстоянию между обеими обкладками электрического конденсатора с размытой внешней обкладкой. [c.201]

    Согласно закону Паскаля гидростатическое давление во всех точках покоящейся жидкости одинаково при отсутствии внешних сил. В рассматриваемом случае в точках двойных ионных слоев действуют силы электрического поля. Обусловленные зарядами, сосредоточенными в соответствующих местах. От этого гидростатическое давление изменяется, причем давление в какой-либо точк жидкой прослойки по сравнению с равномерным давлением в [c.273]


Смотреть страницы где упоминается термин Двойной внешний слой: [c.612]    [c.643]    [c.330]    [c.176]    [c.56]    [c.51]    [c.18]    [c.173]    [c.190]    [c.234]   
Электрохимическая кинетика (1967) -- [ c.102 ]




ПОИСК







© 2025 chem21.info Реклама на сайте