Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород влияние на фотосинтез

    Влияние фотосинтеза на поглотительную деятельность корневой системы сказывается также и через дыхание корней, ибо оно зависит от достаточного притока углеводов из листьев. О дыхании корней можно судить как по потреблению ими кислорода, так и по выделению углекислоты. В лаборатории Д. Н. Прянишникова определяли расход кислорода на дыхание (в мг О2 на 1 г сухих веш еств в сутки) у гороха он составлял 0,25, у кукурузы — 1,20. В дальнейшем было установлено, что максимальный расход кислорода на дыхание у корня лука приходится на участок 5 мм и более от его кончика. Наибольшая поглотительная деятельность молодого корня находится тоже не в само кончике, а в зоне корневых волосков, расположенной на некотором удалении от кончика корня. [c.77]


    ВЛИЯНИЕ КИСЛОРОДА. НА ФОТОСИНТЕЗ [c.334]

    Из ЭТИХ результатов ясно видно, что опыты по влиянию света на дыхание — если в них измеряется концентрация только одного газа—должны приводить к совершенно разным заключениям в зависимости от того, с каким газом мы имеем дело — с кислородом или СОг. Еще труднее объяснить данные, полученные без применения изотопных индикаторов, так как при этом мы лишены возможности отделить влияние дыхания на концентрации соответствующих газов от влияния фотосинтеза. [c.82]

    Влияние фотосинтеза на поглотительную деятельность корневой системы сказывается также и через дыхание корней, ибо оно зависит от достаточного притока углеводов из листьев. О дыхании корней можно судить как по потреблению ими кислорода, так и по выделению углекислоты. [c.71]

    Одна из сторон влияния кислорода на фотосинтез может состоять в том, что он способен служить акцептором электронов, конкурируя тем самым с углекислым газом. Не исключено, наконец, что кислород может оказывать угнетающее влияние на фотосинтез путем гашения электронно-возбужденного состояния хлорофилла. Таковы причины сложного характера взаимоотношений между двумя функциями — фотосинтезом и дыханием (см. в гл. Дыхание ). [c.195]

    Известно, что в процессе фотосинтеза флора поверхностных слоев воды использует углерод из СО2 и выделяет в окружающую среду кислород. Поэтому свет оказывает большое влияние на окислительные процессы. [c.285]

    Итак, при определении объемной силы g в уравнении баланса сил и количества движения (2.1.2) необходимо учитывать влияние изменения концентрации компонентов С на плотность. Действительно, во многих важных случаях изменение концентрации является единственной движущей силой. Тогда С входит в уравнение (2.1.2) в том же виде, как температура в течениях, вызванных переносом тепла. Чтобы связать конвективный и диффузионный перенос химических компонентов, необходимо дополнительное уравнение сохранения, аналогичное уравнению (2.1.3) для температуры. Если происходит одновременная диффузия нескольких различных химических компонентов, требуется несколько таких уравнений. Примером является движение слоя воздуха, непосредственно примыкающего к нагреваемому солнцем листу, находящемуся в почти покоящемся воздухе. Регулирование температуры осуществляется переносом тепла и образованием водяного пара, диффундирующего с поверхности. Но процесс фотосинтеза требует, чтобы к поверхности диффундировал СОг из безграничного резервуара атмосферы, в котором концентрация СОг составляет 0,035 %. Кроме того, с поверхности выделяется и диффундирует О2. Таким образом, имеются три активно диффундирующих компонента водяной пар Н2О, углекислый газ СО2 и кислород О2. Каждый из них диффундирует под действием очень малых, но различных разностей концентраций Со—Соо. Эти процессы происходят в среде, состоящей из других составляющих воздуха — главным образом N2 и основного содержания О2. [c.35]


    Таким образом, почва состоит из минеральной и органической (гумуса) частей. Минеральная часть составляет от 90 до 99 % и более от всей массы почвы. В ее состав входят почти все элементы периодической системы Д. И. Менделеева. Однако основными составляющими минеральной части почв являются связанные в соединения кислород, кремний, алюминий и железо. Эти четыре элемента занимают около 93 % массы минеральной части. Гумус является основным источником питательных веществ для растений. Благодаря жизнедеятельности населяющих почву микроорганизмов происходит минерализация органического вещества с освобождением в доступной для растений форме азота, фосфора, серы и других необходимых для растений химических элементов. Органическое вещество оказывает большое влияние на формирование почв и изменение ее свойств. При разложении органических веществ почвы выделяется углекислый газ, который пополняет приземную часть атмосферы и ассимилируется растениями в процессе фотосинтеза. Однако какой-бы богатой питательными веществами ни была почва, рано или поздно она начинает истощаться. Поэтому для поддержания плодородия в нее необходимо вносить питательные вещества (удобрения) органического или минерального происхождения. Кроме того, что удобрения поставляют растениям питательные вещества, они улучшают физические, физико-механические, химические и биологические свойства почв. Органические удобрения в значительной степени улучшают водно-воздушные и тепловые свойства почв. Способность почвы поглощать пары воды и газообразные вещества из внешней среды является важной характеристикой. Благодаря ей почва задерживает влагу, а также аммиак, образую- [c.115]

    Химическая экология атмосферы. Эколого-химические процессы в атмосфере. Аэрозоли и их влияние на окружающую среду. Экологические функции кислорода, азота, серы и их соединений в атмосфере. Озоновый экран и озоновая дыра . Химизм образования фотохимического смога. Оксиды углерода и их роль в фотосинтезе. Химические вещества - загрязнители атмосферы. Парниковый эффект. Кислотные дожди. [c.4]

    Важнейшее значение для ряда жизненных процессов имеют тс-электронные сопряженные системы порфириновых соединений -производных порфирина [4]. Порфириновые комплексы играют роль первичных факторов фотосинтеза, ко-ферментов и ферментов, участвуют в процессах дыхания и переносе кислорода. Среди огромного числа фундаментальных биохимических и биофизических процессов, ответственных за создание энергетических запасов в живом организме, много таких реакций, которые протекают самопроизвольно при участии ферментных катализаторов - металлопорфириновых комплексов. Эти соединения, находясь в организме, испытывают со стороны окружения влияние, подобное тому, которое возникает при их растворении [c.6]

    Решающее влияние на эволюцию всех сфер Земли, прежде всего на биосферу, оказали зарождение и последующее интенсивное развитие фотосинтеза зеленых растений, затем возникновение живых организмов. Развитие фотосинтеза приводило к выделению больших количеств свободного кислорода в гидросфере, затем в атмосфере и накоплению массы живого вещества сначала в океане, потом и на суше. Поглощаемый фотосинтезом углекислый газ постепенно убывал в атмосфере Земли. Аммиак и метан практически полностью исчезли из атмосферы в результате окисления. Земная атмосфера приобретала качественно новый, близкий к современному азот- [c.49]

    Вещества, ингибирующие электронный транспорт, как следствие ингибируют также окислительное фосфорилирование, фотосинтез и фотофосфорилирование. Некоторые вещества (например, динитрофенол), которые разобщают или ингибируют фосфорилирование или ингибируют стадию выделения кислорода в процессе фотосинтеза, могут не оказывать влияния на электронный транспорт или даже стимулировать его. [c.251]

    Деполяризация катодных участков зависит от температуры, суммарного солесодержания и степени аэрации морской воды. На рис. 1.1 и 1.2 показано влияние температуры, солесодержания и аэрации на скорость коррозии углеродистой стали Ст. 3. В среднем при повышении температуры на 10°С скорость коррозии возрастает в два раза [2]. Источником кислорода (фактор, определяющий степень аэрации) может являться не только-воздушная среда, кислород выделяется и в процессе фотосинтеза высших растений. Процесс фотосинтеза может приводить к локальному повышению концентрации растворенного в воде кислорода и к инициированию действия коррозионных пар дифференциальной аэрации. [c.17]

    Для биосинтеза белков и других сложных органических соединений требуется затрата большого количества энергии. Основными источниками энергии в растениях, как известно, являются дыхание (окислительное фосфорилирование) и фотосинтез (фотосинтетическое фосфорилирование). Между интенсивностью синтеза белков и Интенсивностью дыхания существует тесная связь в молодых органах и тканях, характеризующихся высокой скоростью биосинтеза белков, интенсивность дыхания всегда была выше, чем в более старых органах. Без доступа кислорода или -при подавлении дыхания лод действием ингибиторов синтез белков прекращался. Фотосинтез также оказывал влияние на биосинтез белков и при повышении интенсивности фотосинтеза синтез белков -в растениях усиливался. При продолжительном нахождении растений в темноте в искусственных условиях, даже когда растения снабжаются извне питательными веществами (сахарами и нитратами), распад белков преобладает над их синтезом. [c.288]


    Для того чтобы достичь этой цели, необходимо оценить относительную важность различных факторов, ограничивающих фотосинтез. Действие этих факторов определяется как внутренними фотобиологическими и физиологическими ограничениями,, так и теми характеристиками окружающей среды, которые сказываются на проявлении этих лимитирующих факторов. К числу таких важнейших факторов относятся индекс урожайности,, свет, СОг, вода, температура, питательные вещества, вредители и болезни, влияние кислорода и фотодыхание, темновое дыхание, ограничение скорости переноса электронов, содержание ферментов карбоксилирования, светособирающих пигментов,, диссипация энергии в побочных реакциях и скорость переноса веществ из хлоропластов. [c.49]

Рис. 4. Равновесие между фотосинтезом (Ф) и дыханием (Д). Нарушение равновесия Ф—Д является следствием вертикального (озеро) или продольного (река) разделения Ф и Д организмов. Нарушение равновесия между фотосинтезом и дыханием ведет к загрязняющему влиянию того или иного вида истощению кислорода, если Ф<Д, или массовому развитию водорослей, если скорости продукции становятся больше, чем скорости разрушения водорослей потребляющими или разрушающими организмами (Ф<Д). Рис. 4. <a href="/info/3428">Равновесие между</a> фотосинтезом (Ф) и дыханием (Д). <a href="/info/400670">Нарушение равновесия</a> Ф—Д является следствием вертикального (озеро) или продольного (река) разделения Ф и Д организмов. <a href="/info/400670">Нарушение равновесия</a> <a href="/info/1894465">между фотосинтезом</a> и дыханием ведет к загрязняющему влиянию того или иного вида истощению кислорода, если Ф<Д, или массовому развитию водорослей, если скорости продукции становятся больше, чем <a href="/info/295970">скорости разрушения</a> водорослей потребляющими или разрушающими организмами (Ф<Д).
    По Рике и Гаффрону [35], нри прерывистом освещении цианид оказывает такое же действие на фоторедукцию адаптированных водорослей, как и при обычном фотосинтезе. Одинаковое влияние цианида на фотосинтез (с выделением кислорода) и фоторедукцию (без выделения кислорода) служит лучшим доказательством того, что цианидное торможение не влияет на энзим, выделяющий кислород. [c.319]

    Явления, описанные в главе VI, по мнению Гаффрона, объясняются активированием гидрогеназы продуктами брожения. Ни один из этих экспериментов не доказывает, что отсутствие кислорода во время освещения, без предварительной анаэробной инкубации, оказывает тормозящее влияние на фотосинтез наоборот, результаты рассмотренных опытов доказывают несостоятельность такого предположения. [c.336]

    Влияние кислорода на фотосинтез может проявляться дёояким образом — полное отсутствие кислорода часто останавливает фотосинтез, а избыток кислорода неизменно снижает скорость этого процесса. [c.334]

    Кислород. Естественно, что Каутский,, теория которого об исключительной роли кислорода при переносе энергии возбуждения описана в т. I (стр. 521), интересовался тушением флуоресценции листьев кислородом. Однако ни Каутский, Гирш и Давидсгофер [149], ни Каутский и Гирш [151], ни Вассинк, Вермейлен, Катц и Реман [152] не смогли обнаружить никакого определенного влияния изменений в концентрации внешнего кислорода (в пределах 1 и 100°/о) на выход стабильной флуоресценции листьев и водорослей. Мак-Алистер и Майерс [154] нашли, что увеличение концентрации кислорода от 0,5 до 20 /о вызывало заметное усиление флуоресценции (фиг. 225), т. е. эффект, противоположный тушению и, возможно, связанный с ингибирующим действием кислорода на фотосинтез, описанным в т. I (гл. XIII). [c.498]

    ВЛИЯНИЕ МЕТУРИНА НА ПРОЦЕССЫ ВЫДЕЛЕНИЯ КИСЛОРОДА ПРИ ФОТОСИНТЕЗЕ [c.191]

    Решающее влияние на эволюцию всех сфер Земли, прежде ьсего на биосферу, оказали зарождение и последующее интенсивное развитие фотосинтеза зеленых растений, затем возникновение живых организмов. Развитие фотосинтеза приводило к выделению больших количеств свободного кислорода в гидросфере, затем в с1Тмосфере и накоплению массы живого вещества сначала в океане, потом и на суше. Поглощаемый фотосинтезом углекислый газ постепенно убывал в атмосфере Земли. Аммиак и метан практически полностью исчезли из атмосферы в результате окисления. Земная атмосфера приобретала качественно новый, близкий к современному азотно-кислородный состав с небольшим количеством углекислого газа. Подобные процессы с изменением химического состава происходили как в морской воде, так и горных породах Земли. И морской воде в результате ускорения окислительных процессов кислоты превратились в соли металлов (хлориды, сульфаты натрия, 1 алия, кальция и т.д.). С изменением pH морской воды менялись [c.42]

Рис.У1.2. Эксперимент Дж. Пристли по vl лeдoвallию фотосинтеза и дыхания. В конце XVIII в. Пристли проводи опыты, в которых наблюдал влияние дыхания растений, животных и процесса горения на состав воздуха. Хотя многое в этих опытах долго оставалось непонятным, был сделан главный вывод растения используют углекислый газ и выделяют кислород, а животные потребляют кислород и выдыхают углекислый газ. Рис.У1.2. Эксперимент Дж. Пристли по vl лeдoвallию фотосинтеза и дыхания. В конце XVIII в. Пристли проводи опыты, в которых наблюдал <a href="/info/1302484">влияние дыхания растений</a>, животных и <a href="/info/94591">процесса горения</a> на <a href="/info/16108">состав воздуха</a>. Хотя многое в этих опытах долго оставалось непонятным, был сделан <a href="/info/1618528">главный вывод</a> растения используют углекислый газ и <a href="/info/1416439">выделяют кислород</a>, а животные <a href="/info/812845">потребляют кислород</a> и выдыхают углекислый газ.
    Изменения концентрации углекислого газа и кислорода в атмосфере оказывают существенное влияние на жизнь в биосфере. Особое значение для фотосинтеза и климата имеет колебание концентрации СОг. Лабораторными и полевыми опытами было установлено, что современное содержание СОг в атмосфере но крайней мере в 10 раз меньше той концентрации, при которой достигается наивысшая продуктивность фотосинтеза. Имеются данные, свидетельствующие о том, что в далеком прошлом концентрация СО2 в атмосфере достигала 0,4% и определялась в основном интепсивной вулканической деягельностью. Именно в этот период и климат был очень теплым. Большую роль в эволюции-атмосферы сыграло и ослабление вулканической деятельности, что привело к уменьшению массы углекислого газа и соответственно к появлению полярных оледенений. [c.612]

    Хоботьев В. Г., Капков В. И. 1968. Влияние полиметаллических руд на выделе-нне и поглощение кислорода в процессе фотосинтеза и дыхания протококковых водорослей.— Научные доклады Высшей школы. Биол. науки, № 4. [c.13]

    Кислородный баланс может смещаться под влиянием токсикантов как в сторону возникновения более или менее длительного и острого кислородного дефицита (если вещество угнетает фото-синтетическую активность фитопланктона и других растительных компонентав экосистемы и способствует деструкции и распаду органического вещества, протекающему с поглощением кислорода), так и в сторону возрастания содержания растворенного кислорода (если вещество стимулирует фотосинтез планктона), что приводит к перенасыщению (это обычно связано с явлением цветения воды). [c.246]

    В незагрязненных водоемах и водотоках, в которых развиваются нормальные флора и фауна, нет условий для развития патогенных болезнетворных бактерий. Отрицательное влияние на их жизнедеятельность прежде всего оказывает температура окружающей среды. Паразитируя в организме человека, эти микробы адаптировались к температуре +37° С, а в природной воде они встречаются с неблагоприятными для их жизни температурными условиями. Кроме того, здесь отсутствуют привычные для патогенных бактерий солевой ооота и обилие питательных веществ. Не благоприятствует их жизнедеятельности также развитие высшей водной растительности, продуцирующей кислород в результате фотосинтеза, и микробов-антагонис-тов, выделяющих в воду антибиотические вещества. [c.186]

    Так, при окислении субстратов фотосинтетическими бактериями было обнаружено, что в магнитном иоле уменьшается выход триплетных молекул Р-870 [45]. Предполагается, что перенос электрона в возбужденном состоянии от Р-870 к бактериофеофи-тину создает ион-радикальную нару в синглетном состоянии, в которой происходит синглет-триплетное превращение со скоростью, зависящей от поля вследствие СТВ и в паре. По этой причине выход триплетов при диспропорционировании пары будет зависеть от поля именно так авторы [45] объяснили магнитные эффекты при бактериальном фотосинтезе. Аналогичным образом — переходами между спи1ювыми состояниями пары Ре + Ог —авторы [60] объяснили обнаруженное ими влияние магнитного поля на скорость выделения кислорода ири разложении Н2О2 железосодержащим ферментом каталазой. [c.44]

    Мы установили в предыдущей главе, что фотосинтез у бактерии поразительно адаптивен. С другой стороны, фотосинтез зеленых растений давно считается процессом, который может ускоряться и замедляться под влиянием внешних условий, но внутренний механизм которого неизменяем. Это, однако, не совсем так. Накамура [5, 6] нашел, что некоторые диатомеи (Pinmilaria) и сине-зеленые водоросли (Os illaioria) могут использовать сероводород для восстановления двуокиси углерода. Таким образом они могут перейти к типу обмена, похожему на обмен веществ пурпурных серобактерий. Обычно фотосинтез зеленых растений подавляется сероводородом. Однако в опытах Накамура водоросли ассимилировали двуокись углерода даже в присутствии сероводорода. В этом случае выделение кислорода заменилось отложением капель серы в клетках. [c.133]

    Прибавление любого нового вещества к среде, в которой живет растение, или удаление обычно присутствующего в ней вещества легко может затронуть его фотосиятетическую деятельность. Список этих веществ весьма обширен и включает яды, наркотики, альдегиды, сахара, органические и неорганические кислоты и их соли, кислород и воду. Действие некоторых веществ высоко специфично они, очевидно, имеют сродство к определенным компонентам фотосинтетического аппарата. Другие вещества действуют менее специфично, как, например, все уретаны вследствие своей поверхностной активности, все кислоты благодаря общему компоненту—водородному иону и все вообще растворенные вещества вследствие осмотического действия. В первой части в астоящей главы рассматриваются специфические каталитические яды (синильная кислота, гидроксиламин, сероводород и т. д.), а во второй — наркотики типа хлороформа, эфира или уретана. Глава Х1П будет посвящена влиянию на фотосинтез концентрации кислорода, углеводов, солей и других разнообразных физических и химических ингибиторов и стимуляторов. [c.309]

    Торможение фотосинтеза избытком кислорода изучалось многими исследователями [4, 12, 17]. Варбург [4], Мак Алистер и Майерс [18] изучали влияние кислорода на фотосин1ез hlorella и пшеницы на сильном свету и при обильном снабжении двуокисью углерода. Когда концентрация кислорода возрастала от 0,5 до 200/д, максимальная скорость фотосинтеза уменьшалась на 30%. Фиг. 45 иллюстрирует данные, полученные для hlorella.  [c.336]

Фиг. 46. Влияние кислорода, азота и воздуха на фотосинтез hlorella Ц2]. Фиг. 46. <a href="/info/71685">Влияние кислорода</a>, азота и воздуха на фотосинтез hlorella Ц2].

Смотреть страницы где упоминается термин Кислород влияние на фотосинтез: [c.445]    [c.193]    [c.121]    [c.223]    [c.257]    [c.107]    [c.24]    [c.52]    [c.66]    [c.70]    [c.315]    [c.348]    [c.544]    [c.576]   
Фотосинтез 1951 (1951) -- [ c.334 , c.336 ]




ПОИСК





Смотрите так же термины и статьи:

Фотосинтез



© 2025 chem21.info Реклама на сайте