Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гиббса диссоциации связи

    Закономерности в термодинамической устойчивости. Термодинамическая устойчивость комплексов определяется изменением свободной энергии Гиббса, которая связана уравнением (111.42) с константой равновесия. Для процессов диссоциации комплексной частицы в растворе эта величина называется константой неустойчивости. Например, для процесса [c.273]


    Стандартная энергия Гиббса диссоциации Д0 связана с константой Кл выражением  [c.91]

    В связи с опытами по использованию этилбензол-о-диэтилбензол-ванадия для получения тонких ванадиевых покрытий представляет интерес изучить, какие варианты разложения его термодинамика разрешает. Ввиду этого нами измерены энтальпии сгорания и низкотемпературная теплоемкость обсуждаемого вещества и по полученным результатам вычислены энтальпия образования его, средняя энергия диссоциации связи ванадий — лиганд и энергия Гиббса возможных процессов разложения. [c.42]

    Изменения химических потенциалов компонентов раствора при изменении его состава и постоянстве давления и температуры связаны между собой уравнением Гиббса — Дюгема [см. т. I, стр. 172, уравнение (V, 12)]. Используем высказанное выше предположение о полной диссоциации сильных электролитов. В дальнейшем мы сумеем применить выводимые здесь соотношения и к слабым электролитам с учетом неполной диссоциации последних. [c.396]

    Как уже было упомянуто, движущая сила химической реакции определяется энергией Гиббса AG. В выражении (3) АН представляет энтальпийный, а TAS — энтропийный фактор. Первый из них отражает тенденцию системы к образованию связей в результате взаимного притяжения частиц — молекул или атомов, что приводит к их усложнению, а второй — тенденцию к усилению процессов диссоциации сложных частиц на более простые и их менее упорядоченному состоянию. Оба фактора обычно действуют в противоположных направлениях и общее направление реакции определяется влиянием преобладающего фактора. [c.80]

    Строго говоря, константа К диссоциации при конечном зна-, чении ионной силы является эффективной величиной. Истинная константа Л" =/С Уд-ДнА Уцд коэффициенты активности соответствующих частиц). Однако поскольку отношение коэффициентов активности обычно близко к единице, можно с хорошим приближением принять, что К. — К, т. е., что эффективная константа достаточно хорошо описывает поведение низкомолекулярного электролита в водном растворе. Для низкомолекулярных электролитов константа диссоциации является характеристической величиной. Она не зависит от концентрации, степени диссоциации электролита и связана с изменением стандартной энергии Гиббса ионизации молекул уравнением [c.116]

    Электролитическая диссоциация протекает самопроизвольно, т. е энергия Гиббса системы понижается (А0< 0). Понижение энергии Гиббса системы обусловлено образованием сольватированных ионов. Энергия взаимодействия молекул растворителя с растворенным веществом (энергия сольватации) достаточна, чтобы разрушить химические связи в молекулах или ионных кристаллах. [c.153]


    Гидриды неметаллов. Соединения неметаллических элементов с водородом, в которых степень окисления водорода -f-I, называют гидридами неметаллов. Гидриды многих неметаллов газообразны, имеют ковалентный тип связей в молекулах. В подгруппах периодической системы с увеличением порядкового номера элемента стандартная энергия Гиббс-а образования гидридов неметаллов возрастает (рис. 79). Следовательно, уменьшаются химическое сродство между водородом и неметаллическими элементами и устойчивость молекул гидридов. Из гидридов галогенов — галогеноводородов — наиболее устойчивы молекулы HF, заметная диссоциация которых на атомы не наблюда- [c.236]

    Хотя на основе измерений точек замерзания еще в начале XX столетия были вычислены константы кислотной диссоциации альдегидов [2, 13] и константа равновесия реакции хромат — бихромат [40], криоскопия не применялась достаточно широко для количественного изучения равновесия частично из-за необходимости особой тщательности при проведении опыта для получения точных результатов, частично из-за изменения осмотического коэффициента от концентрации. Осмотические коэффициенты связаны со средними коэффициентами активности уравнением Гиббса — Дюгема [c.310]

    Константа диссоциации К связана с изменением свободной энергии Гиббса следующим уравнением  [c.40]

    Многие из исследований по теории гетерогенного равновесия [6380—6456] осуществлены для систем, важных для металлургических процессов [6380—6384, 6391, 6425—6435, 6438, 6439, 6441, 6443, 6449—6452, 6454—6456]. Так, в [6382, 6383] описан метод расчета энергии Гиббса для реакций между веществами нестехиометрического состава (в [6383] на примере взаимодействия силикатов щелочных металлов с карбидом кремния), в [6391, 6402] прослежены закономерности взаимодействия контролируемых атмосфер с металлами, в [6431] дана термодинамическая оценка взаимодействия дисперсных включений тугоплавких окислов с твердыми металлами, в [6438] приведено термодинамическое описание процесса разделения металлургических эмульсий в условиях их образования, роста включений и адсорбции (без учета процессов коагуляции), в [6449] проанализирована связь скорости восстановления окислов цветных металлов из расплава с давлением их диссоциации (см. также [3900, 3901, 4079, 4119]). [c.57]

    Зато сильно различаются тепловые эффекты—от эндотермического процесса диссоциации СОг (+135,3 ккал/моль) до экзотермического разложения закиси азота на азот и кислород. Сопоставление значений ДО с тепловыми эффектами показывает, что последние определяют для этих реакций знак и величину ДО, а отсюда и термодинамически вероятное направление реакции. В связи с этим, отнюдь не отказываясь от приведенной ранее критики принципа Бертло, следует указать на многочисленность примеров, когда в общем неверный принцип подтверждается. Так, большие положительные значения ДЯ для реакций (5.94) и (5.96) определяют также положительное изменение энергии Гиббса. Следовательно, в стандартных условиях могут самопроизвольно протекать реакции противоположного направления. Для закиси азота справедливо обратное. Здесь отрицательное значение ДЯ ведет к отрицательному АО и это заставляет считать НгО веществом неустойчивым при обычных условиях. Возможность же ее применения в лабораториях и медицинской практике обусловлена кинетическими причинами, т. е. очень малой скоростью разложения закиси азота, что в отсутствие катализаторов делает ее практически устойчивой. [c.141]

    Э. возникла на рубеже 18 и 19 вв. благодаря работам Л. Гальвани и А. Вольта, в результате к-рых был создан первый химический источник тока — вольтов столб . Используя хим. источники тока, Г. Дэви в нач. 19 в. осуществил электролиз многих в-в. Законы электролиза были установлены М. Фарадеем в ЗО-х гг. 19 в. (см. Фарадея законы). В 1887 С. Аррениус сформулировал основы теории электролитической диссоциации. В 20-х гг. 20 в. зта теория была дополнена П. Дебаем и Э. Хюккелем, к-рые учли электростатич. взаимод. между ионами. В дальнейшем на основе Дебая — Хюккеля теории были развиты представления о механизме электропроводности электролитов (Л. Онсагер, 1926). Во 2-й пол. 19 в. благодаря работам В. Нернста, Дж. Гиббса и Г. Гельмгольца были установлены осн. термодинамич. соотношения Э., к-рые позволили связать здс злектрохим. цепи с тепловым эффектом протекающей на электродах р-ции. Модельные представления о строении границы между электродом и р-ром, [c.705]

    Работами Дж. Гиббса, Вант-Гоффа, В. Нернста и др. создается химическая термодинамика. Исследования электропроводности р-ров и электролиза привели к открытию электролитич. диссоциации (С. Аррениус, 1887). В это же году Оствалвд и Вант-Гофф основали первый журнал, посвященный физической химии, и она оформилась как самостоятельная дисциплина. К сер. 19 в. принято относить зарождение агрохимии и биохимии, особенно в связи с пионерскими работами Либиха (1840-е гг.) по изучению ферментов, белков и углеводов. [c.259]

    Э. ц. составляют основу химических источников тока. Измерения эдс соответствующим образам подобранных Э. ц. позволяют находить коэф. активности компонентов электролитов, числа переноса ионов, произведения растворимости разл. солей, оксвдов, константы равновесия ионных р-ций (константы диссоциации слабых к-т и оснований, константы устойчивости растворимых комплексов, в т. ч. ступенчатые константы). Эдс хим. Э. ц. однозначно связана с изменением свободной энергии Гиббса ДО в ходе соответствующей хим. р-ции Е = -АО/пР (п - число участвзтощих в р-ции электронов Р - число Фарадея), поэтому измерения эдс могут использоваться для расчета АС, причем часто электрохим. метод определения как относительно простой и высокоточный имеет существенные преимущества перед термохим. методами. Применение ур-ния Гиббса-Гельмгольца к Э. ц. при постоянном давлении приводит к соотношению  [c.463]


    Изменение энергии Гиббса образования молекулярного комплекса характеризует его способность к диссоциации в растворе, а изменение энтальпии - энергию донорно-акцепторной связи. Необходимо отметить, что сами по себе термодинамические характеристики не могут быть корректно использованы для оценки типа образовавшегося комплекса. Энергия донорно-акцепторных связей иода охватывает широкий интервал значений от 8-12 до 65 кДж/моль [15]. Первые величины сопоставимы с энергией ван-дер-ваальсовых сил, вторые - с энергией ковалентной связи. Поэтому для интерпретации закономерностей термодинамических характеристик образования донорно-акцепторных комплексов используют подходы, устанавливающие взаимосвязь термодинамических параметров со структурными, спектральными и др. Необходимо отметить, что для комплексов иода с донорами, близ- [c.15]

    Стадия дегидратации (3.6) соответствует разрыву связей между ионом М + и координирующимися вокруг иего молекулами воды (связи преимущественно считаются ионными). Вокруг самого аква-комплекса имеется гидратная оболочка со слаСыми связями, затрата энергии на ее диссоциацию также входит в общий баланс, который по величине равен обратному процессу— гидратации иона. Аналогично, нейтрализация иона М + противоположна процессу ионизации, а образование кристалла— сублимации. Таким образом, нормальный электродный потенциал может быть связан с энергиями гидратации (гл. 4, разд. Б.5), ионизации (гл. 2, разд. 5) и образования изолированного атома (гл. 2, разд. 8). При этом следует иметь в виду, что эти величины представляют собой изменение ДЯо, поэтому для перехода к энергии Гиббса необходимо учесть изменение энтропии. [c.141]

    Поскольку реакции восстановления углеродом и водородом протекают в гетерогенной фазе, трудно непосредственно выразить в виде зависимости их нормальные электродные потенциалы. Однако для элементов, которые можно восстановить угле-родо.м, фактическим граничным условием является о>—0,5 В (исключение составляет 2п с о = —0,763 В в этом случае по мере образования продукта восстановления — металлического цинка — его удаляют из реакционной системы в виде паров). Это означает, что суммарное изменение энергии Гиббса для процесса (3.4) связано почти линейной зависимостью с изменением энергии восстановления твердых оксидов углеродом. Оксиды металлов являются ионными кристаллами, и процесс выделения из иих металлов можно рассматривать в соответствии с общей реакцией (3.4). Уравнение (3.6) отвечает диссоциации ионного кристалла — оксида МаОп- Если гидратацию рассматривать как образование ионной координационной связи, то можно считать, что изменение АС°, приведенное для (3.4), в какой-то мере может отражать АС° для случая диссоциации ионных связей между М—О. [c.142]

    Адсорбция каждого компонента в межфазном слое сопровождается из-м нение.м энергии Гиббса и энтальпии системы, т. е. совершением работы ш, и выделением теплоты 9,. Энергия адсорбции — алгебраическая сумма всех энергетических эффектов, связанных с процессами а) образования связи адсорбент — а.дсорбат б) десорбции других компонентов в) разрыва связен (например, при диссоциации или дегидратации молекулы адсорбата) г) с лругчми вида.мн реорганизации системы. [c.226]

    Работа Друккера является последней попыткой определения плотности насыщенного диссоциирующего пара, и ее рассмотрение в связи с результатами предшественников, Рамзая и Горстмана, показывает, что вопрос о приложимости теории Гиббса к явлению диссоциации паров в состоянии насыщения еще не разрешен. [c.283]

    После того, как в начале 70-х годов вырабатывалось понятие о температуре абсолютного кипения (/с, доп. 109) и стала очевидною связь с ее отступлениями от закона Бойль-Мариотта, а особенно после сжижения постоянных газов, общее внимание обратилось на усовершенствование основ-вых понятий о газообразном и жидком состояниях веществ. Одни исследователи шли путем дальнейшего изучения паров (напр.. Рамзай и Юнг), газов (напр., Амага) и жидкостей (напр., Заенчевский, Надеждин и др.), особенно близ <с и рс, другие (напр., Коновалов, Де-Геен и др.) старались в обычном (далеком от /с и рс) состоянии жидкостей найти их отношение к газам, а третьи (Ван-дер-Ваальс, Клаузиус и др.), изойдя из общепринятых уже начал механической теории тепла и кинетической теории газов, сделав очевидное предположение о сущесгвовании в газах тех сил, которые явно действуют в жидкостях, выводили связь свойств тех и других. Здесь, в этом элементарном руководстве, неуместно излагать совокупность достигнутых выводов (см. физическую химию), но полезно дать понятие о результатах соображений Ван-дер-Ваальса, ибо они уясняют непрерывность перехода от жидкостей к газам в самом простейшем виде и, хотя вывод нельзя считать совершенным и окончательным (доп. 63), тем не менее он столь глубоко проникает в сущность дела, что его значение не только отражается во множестве физических исследований, но и в области химии, где столь обычны переходы вещества из газового в жидкое состояние, а также обратно, и где самые процессы диссоциации, разложения и соединения необходимо не только уподобить перемене физических состояний, но и сводить к ним, так как направление реакций обусловливается физическим состоянием участвующих веществ, что разрабатывали Девилль, Гиббс, Ливеинг и многие другие. [c.428]

    Так как электронная структура всех водородгалогенидов одинакова, с ростом ионного радиуса галогена свойства НГ в ряду F—Гмонотонно изменяются (исключение составляет HF). Снижение прочности химической связи в молекулах НГ в ряду HF — H I — НВг—HI находит отражение в уменьшении энтальпий диссоциации молекул НГ на атомы и в увеличении энтальпии и энергии Гиббса образования молекул НГ (см. табл. 8.12)  [c.375]

    Решение. Величина изменения энергии Гиббса связана с ветчиной константы процесса (в данном случае с величиной кон- танты нестойкости К, ) А0°2о = —2,303ЯТ К. Вычисление для процесса диссоциации комплексного иона [Сс1(СН)4Р  [c.38]


Смотреть страницы где упоминается термин Гиббса диссоциации связи: [c.244]    [c.22]    [c.116]    [c.216]    [c.286]    [c.3]    [c.859]    [c.40]    [c.98]   
Химия (1978) -- [ c.646 ]




ПОИСК





Смотрите так же термины и статьи:

Гиббс

Гиббса связи

Гиббсит



© 2025 chem21.info Реклама на сайте