Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бронзы продукты

    Кремнистые бронзы Продукты горения газа, освобожденные от СО2 и Н2О, или диссоциированный аммиак [c.93]

    Оловянистые бронзы Продукты горения газа с небольшим недостатком воздуха [c.93]

    На основании исследований состава и структуры продуктов коррозии бронзы методами элементного анализа, инфракрасной, ультрафиолетовой и рентгеновской спектроскопии можно с определенной достоверностью представить следующую схему образования продуктов коррозии. [c.290]


    J.4.3. Для сборника продукта, работающего под внутренним избыточным давлением рр = 0,25 МПа, при температуре стенки t 100 °С, определить краевые нагрузки М(1, Qo и распорную силу Q в узле соединения цилиндрической обечайки и сферического неотбортованного днища. Диаметр аппарата D = 2000 мм, угол сферы днища 2ф == 60°, радиус сферы диища R = 2000 мм, толщина стенок s = = S = 5 мм, материал аппарата — бронза М2, прибавка к расчетной толщине стенок с= 1 мм. [c.71]

    Кроме того, деактиваторы металла в реактивных и дизельных топливах проявляют функцию ингибиторов коррозии. Так, коррозия стали в присутствии влаги под действием сернистого дизельного топлива, содержащего деактиватор металла, снижается на 80—100% по сравнению с результатом для топлива без присадки. В сернистом реактивном топливе деактиватор металла снижает коррозию бронзы ВБ-24 при 120 °С более чем в 2 раза (с 7 до 3,2 г/м ) и отложения на металле более чем в 10 раз (с 8,5 до 0,6 г/м ) содержание нерастворимых продуктов, однако, уменьшается незначительно [9]. Противокоррозионное действие деактиватора металла сохраняется и при совместном его добавлении с анти- [c.134]

    Реальные химические и металлургические реакции совершаются с участием растворов. Расплавленные чугун, сталь, медь, другие цветные металлы представляют собой жидкие растворы различных элементов, преимущественно неметаллов (углерод, кислород, сера и др.) в основном металле. Расплавленные шлаки доменных и сталеплавильных печей являются растворами оксидов. Промежуточный продукт при выплавке меди (штейн) есть раствор сульфидов меди и железа. Подавляющее большинство промышленных сплавов содержит в своем составе твердые растворы. Сталь — твердый раствор углерода в железе. Предшественница железа в истории техники — бронза есть раствор олова и меди. Водные растворы солей, кислот и оснований широко используются в гидрометаллургии при извлечении цветных металлов из руд. Значение водных растворов выходит за рамки техники вследствие их исключительной роли во всех биологических процессах. [c.96]

    Наполнители. Для улучшения таких свойств прокладок, как теплопроводность, износостойкость и прочность [5, 9], применяют различные неорганические и органические наполнители. Окснды кальция н магния одновременно служат и ускорителями отверждения фенольных смол. Часто применяют оксиды меди, железа и цинка, а такл<е сульфиды (дисульфид молибдена, сульфиды железа и цинка). Для снижения теплопроводности в композицию вводят металлы, такие как железо, никель, магний, медь, бронзу и цинк в виде порошка или стружек. Графит и сульфид молибдена используют как смазочные вещества. В качестве наполнителей часто применяют пыль от истирания фрикционных накладок, отвержденный и тонкоизмельченный продукт взаимодействия дегтя (из скорлупы орехов кешью) и формальдегида [10]. Полагают, что этот продукт образует при торможении пленку на поверхности фрикционной накладки, и эта пленка компенсирует неровности на трущихся поверхностях и уменьшает износ. [c.243]


    Механизм этой реакции неизвестен, но ее легко представить в виде ряда стадий, сопровождающихся ионизацией, в которых характер образующихся продуктов определяется относительной стабильностью промежуточных карбониевых ионов. Роль медной бронзы, которую иногда применяют в качестве катализатора этой реакции, вероятно, сводится к увеличению доступности иона хлора [c.352]

    Глубокие язвы, заполненные продуктами коррозии зеленого цвета, наблюдаются на медных нагревательных колонках ванн, когда топливо содержит соединения галогенов. Склонность к образованию язв объясняется также структурой сплавов, например кремнистые бронзы используются в снсте , ах горячего [c.116]

    Продукты коррозии, образовавшиеся на литейной N1—Мп бронзе в течение 403 сут экспозиции на глубине 1830 м, исследовались при помощи дифракции рентгеновских лучей методами спектрографии, инфракрасной спектрофотометрии и количественного химического анализа. Продукты коррозии состояли из хлористой меди СиСЬ-НаО, оксихлорида меди [Си2(ОН)зС1], металлической меди 35,98%, небольших количеств алюминия, железа, кремния и натрия хлор-ионов в виде С1 —0,91 %  [c.275]

    Химический анализ продуктов коррозии, снятых с алюминиевой бронзы, показал наличие оксихлорида меди, хлористой меди основных элементов—меди и алюминия добавочных элементов — железа, магния, кальция и кремния 0,9 % хлор-ионов и 9 % сульфат-ионов. [c.277]

    К раствору диазония прибавляют 35 г (0,55 гр.-ат.) медной бронзы (примечание 2), предварительно промытой эфиром, и мешалку заменяют на длинный мощный обратный холодильник. Для охлаждения колбы в случае слишком энергичного течения реакции подготовляют баню с ледяной водой. Колбу осторожно нагревают до начала бурного выделения газа. После этого ее погружают в ледяную воду с тем, чтобы несколько замедлить реакцию. Если реакционную смесь не охлаждать, то выделяющийся азот и ацетальдегид могут увлечь с собою через холодильник часть продукта. Когда реакция несколько успокоится, нагревание возобновляют под конец реакционную смесь нагревают в течение 10 мин. на кипящей водяной бане. К концу реакции цвет массы меняется из красновато-коричневого в желтый. [c.135]

    По своей сущности коррозию делят на химическую и электрохимическую. Ржавление железа или покрытие патиной бронзы — химическая коррозия. Если эти процессы происходят на открытом воздухе в комнатных и особенно в природных условиях, то такую коррозию часто называют атмосферной. В промышленном производстве металлы нередко нагреваются до высоких температур и в таких условиях химическая коррозия ускоряется. Многие знают, что при прокатке раскаленных кусков металла образуется окалина. Это типичный продукт химической коррозии. Окалина получается и при простой разливке на воздухе расплавленного металла в изложницы. [c.136]

    Вольфрамовая синь. Этим термином принято называть, как и у молибдена, вещество, получающееся в результате умеренного восстановления растворов, содержащих вольфраматы или коллоидную вольфрамовую кислоту. Состав их неоднороден. Средняя валентность вольфрама (п) в них 6>га>5. В зависимости от рода восстановителя получаются соединения с несколько отличными свойствами. Восстановление цинком в солянокислом растворе дает синий осадок, устойчивый на воздухе. При восстановлении дихлоридом олова образуется синий продукт, легко переходящий в желтый осадок На У04. Некоторые авторы считают, что вольфрамовые сини — водородные аналоги вольфрамовых бронз Н А /Оз (где х=0,1—0,5). Выделено кристаллическое соединение Н ШОз, полученное восстановлением УОз атомарным водородом или литийалюминийгидридом. Другие авторы в [c.227]

    Специфическим мягким растворителем продуктов коррозии меди и бронзы является 10—15 %-й раствор гексаметафосфата натрия, с помощью которого удаляются также известковые новообразования, земля, глина. Размягченные наслоения постепенно удаляют с поверхности предметов механическими способами (щетинной кистью, водой). Значительно ускоряется обработка при использовании горячего 20 %-го раствора гексаметафосфата натрия (40-50 °С). [c.134]

    Загрязнения медью возникают от медных (латунных) гвоздей, петель, декоративной фольги. Оксиды меди можно удалить 5 %-м водным раствором аммиака, водными растворами трилона Б, глицерина. Можно проводить обработку 10—15 %-м раствором гексаметафосфата натрия, который относится к мягким растворителям продуктов коррозии меди, латуни, бронзы. Особое место занимает специфический способ удаления продуктов коррозии меди — обработка загрязненной поверхности водной суспензией катионита аммония (Дауэкс-5Х8, КУ-2Х8 и др.), вязкими составами на основе ПВС, глицерина (3-5 %) и этилендиамина (3—5 %). [c.257]

    В топливе, не содержащем присадок, образуется много осадка, продуктов коррозии и растворимых смол. В присутствии антиокислительных присадок получается немного растворимых кислородных соединений, что свидетельствует о заторможенности процесса окисления. Осадок, состоящий в основном из продуктов коррозии, указывает на образование при повышенных температурах преимущественно кислых, крайне агрессивных по отношению к бронзе продуктов окисления. В присутствии присадок, улучшающих термическую стабильность топлив, в них после нагрева накапливается много растворимых кислородных спединений, но их уплотнение предотвращается. [c.282]


    При плохой подготовке поверхности для консервации на стальных и чугунных изделиях продукты коррозии появляются в виде налета ржавчины оранжево-бурого цвета, которая при сильном распространении переходит в сплошную массу наростов бурого или коричневого цвета продукты коррозии могут также иметь вид темных пятен или точек. На изделиях из алюминиевых и магниевых сплавов продукты коррозии имеют вид пятен или порошкообразного налета белого цвета при дальнейшем развитии коррозии появляются раковины, обычно заполненные продуктами коррозии (белого и серого цвета). На меди и медных сплавах продукты коррозии появляются в виде темных пятен или налета зеленого, реже черного цвета. В сплавах меди со свинцом (свинцовистая бронза) продукты коррозии имеют вид налета черного, темно-или светло-зеленого цвета. На лакированных или окрашенных изделиях появившиеся на поверхности металла продукты коррозии вызывают вздутие пленки, а затем шелушение ее. На йоверхности стальных оксидированных и фосфатированных изделий продукты коррозии появляются в виде ржавчины оранжево-бурого цвета или в виде пятен и точек по цвету мало отличающихся от цвета поверхности металла. На оцинкованных изделиях продукты коррозии на покрытии имеют вид пятен или точек белого, серого цвета или белого порошкообразного налета. [c.22]

    Наконец, при анализе природных соединений или продуктов производства вместо исходных веществ для установки концентрации титрованных растворов чаще пользуются так называемыми стандартными образцами. Стандартные образцы представляют ссбой образцы того материала, который будут анализировать при помощи данного титрованного раствора, но с точно известным содержанием определяемого элемента. Например, при определении марганца в сталях концентрацию употребляемого при этом раствора арсенита натрия NaaAsOa устанавливают по навеске стандартного образца стали с точно известным содержанием марганца. При определении концентрации раствора тиосульфата натрия N828203, предназначаемого для определения меди в бронзах, употребляют стандартный образец бронзы с точно известным содержанием меди и т. д. [c.217]

    I) присутствии меркаптанов содержание металлов в золе осадков увеличивается. Особенно это относится к меди и цинку — составным частям бронзы и латуни. Это свидетельствует о том, что меркантаны активно взаимодействуют с металлами и продукты этого взаимодействия участвуют в образовании нераствО римых осадков. [c.91]

    Из приведенных данных видно, что при достаточно большой поверхности металла, контактирующего с топливом, 25—30% вторично-октилмеркаптана взаимодействуют с металлом значительная часть продуктов окисления остается в топливе в виде нерастворимого осадка, в состав которого входит 2—5% общего количества серы. На поверхности бронзы не образуется заметной защитной пленки. Под микроскопом видны следы разрушитель-1Г0Й деятельности вторичного октилмеркаптана (рис. 12). Поверхность бронзы как бы выедается, причем продукты взаимодействия вторично-октилмеркаптана с металлол не остаются на поверхности бронзы, а переходят в топливо в виде осадка. [c.91]

    По-иному ведет себя тиофенол. Обладая значительно большей склонностью к окислительным превращениям (табл. 52), тиофенол весьма активно взаимодействует с бронзой или латунью, причем продукты взаимодействия тиофенола с металлом остаются па поверхности последнего в виде липкой рыхлой пленки, частично растворяющейся в спиртобвнзоле (см. рис. 9, отложения на бронзе). После обработки спиртобенаолом большая часть поверхности бронзы оставалась все же покрытой пленкой (см. рис. 41). [c.91]

    Под микроскопом видны следы химического взаимодействия с бропаой дисульфидов и, возможно, продуктов их превращений, причем в присутствии диоктилдисульфида наблюдается более интенсивная коррозия (рис. 27). В присутствии же джфенилди-сульфида па бронзе образовалась прочная защитная илспка красноватого цвета (рис. 28). [c.98]

    Конечными продуктами окисления углеводородов топлив и сернистых соединений, растворимыми в воде, являются в основном карбоновые и сульфоновые кислоты [299, 300, 301]. На рис. 6.6 приведены результаты исследований кинетики электродных процессов в водных растворах бензолсульфокислоты. Последняя существенно влияет на развитие катодного процесса коррозии бронзы ВБ-23НЦ, причем предельный диффузионный ток с увеличением концентрации сульфокислоты возрастает, что можно объяснить деполяризующим действием кислоты. [c.287]

    В кристаллической фазе продуктов коррозии бронзы ВБ-23НЦ в топливе Т-7 с децилмеркаптаном наряду с карбонатами, гидроксидами и оксидами металлов содержатся в основном соединения следующего строения [c.290]

    Защитными свойствами при консервации деталей из стали, чугуна и свинцовистой бронзы обладают масла с такими присадками, как ПМСя (сильноосновный нефтяной сульфонат кальция), ВНИИ НП-370 (бариевая соль продукта конденсации технического алкилфенола с формальдегидом), ВНИИ НП-380 (оксипропи-лированный алкилфенолят бария) и синтетические жирные кислоты С20—СзЬ (испытания проводили в присутствии сернистого ангидрида) [2, с.341]. Высокой эффективностью обладает полимерная присадка ИХП-388 тиофосфинатного типа [15, с. 208] и ряд других. [c.187]

    Оптимальные условия промышленного получения олефинов (пропилена и этилена) путем крекинга пропана изучались Эглоффом и соавторами (46). Опыты проводились в трубе из хромоникелевой стали, вставленной в нагреваемый брусок из алюминиевой бронзы. За температуру крекинга принималась температура алюминиевой бронзы. Поэтому следует полагать, что фактическая средняя температура крекинга несколько ниже показанной у Эглоффа. Наибольший выход олефинов дал крекинг нропана в условиях 700° С, 9,7 сек. при атмосферном давлении. При этом образовалось 22,8% (вес.) этилена и 22,5% (вес.) пропилена. Суммарный выход олефинов равен 45,3% (вес.) от взятого в реакцию пропана. Крекинг пропана при той же температуре в течение 6,7 сек. дал 20,9% (вес.) этилена и 20,7% (вес.) пропилена или всего 41,6% (вес.) олефинов. Количество превращенного пропана в последнем опыте равно 70,4%, а состав продуктов крекинга, на основании данных фракционированной перегонки в приборе Под-бельпяка, оказался следующим  [c.50]

    В зависимости от размера дезинтегратора число концентрических рядоз пальцев на -одном барабане -колеблется от 2 до 4 и, следователь-ио, на двух барабанах от 4 до 8. Пальцы изготавливают из стали, бронзы, дюралюминия и других материалов в зависимости от физико-механических и химических овойств из.мельчаемого продукта. Пальцы довольно часто выходят из строя, поэтому дезинтеграторы применяются для сухого из.мельчеиия хрупких, мягких по-род с малой абразивностью (каолин, мел и др.). [c.25]

    Смолы и осадки, образующиеся при окислении прямогонных реактивных и дизельных топлив, характеризуются высоким содержанием кислорода 45-50, серы 7-9, азота 0,5-2,0, зольных элементов (металлов) 7-9%. Среди зольных элементов обычно преобладают медь 1-3, цинк - до 1,0, кальций -до 1,0, железо, алюминий, олове и др. до 0,1%. Эти данные подтверждают активное участие в термохимических превращениях в топливах гетероатомных соединений, каталитическое н.ч. " кке металлов (медь, бронза) и химическое взаимодействие продуктов окисления с металлами. Зависимости осадкообразования в реактивных топливах от темперзт) . приведены на рис. 8. Снижение массы осадка при температ1 р2. 130- 90 С связано с повышением давления насыщенных паров (уменьшением доступа кислорода к поверхности топлива) и увеличением растворимости продуктов окисления в топливе. [c.87]

    Олово является одним из наиболее дефицитных металлов в мировом народном хозяйстве. Его исключительные качества как металла безвредного и стойкого в условиях производства пищевых продуктов, металла, дающего с медью бронзы, а со свинцом — высококачественные антифрикционные сплавы и припои, делают олово труднозаменимым. Промышленность нуждается в чистом олове. ГОСТ 860—41 предусмотрены следующие марки (табл. 69), которые получаются в результате [c.279]

    В качестве продуктов частичного восстановления изополисолей вольфрама (например, путем нагревания их в токе водорода) можно рассматривать т. н. вольфрамовые бронзы. Простейшей схемой образования этих веществ является взаимодействие вольфрамового ангидрида с металлическим натрием л Ыа + WO3 = NaiW03 (где О < д < 1). Приведенная формула показывает, что средняя значность вольфрама в бронзах промежуточна между +6 (при х = 0) и +5 (при д = 1). Вольфрамовые бронзы представляют собой прекрасно кристаллизующиеся вещества с металлическим блеском и близкой к металлической электропроводностью. [c.375]

    Для ванадия довольно характерны продукты частичного восстановления вана-датов приблизительного состава (где О < дг < 1, а М —щелочной металл, NH4, Си, Ag, Pb). Эти ванадиевые бронзы по некоторым свойствам похожи на аналогичные соединения вольфрама (Vni 5 доп. 44). По- идимому, еще более сходны с последними ниобиевые бронзы типа М ЫЬОз (где М — Na, К, Sr. Ва). Имеется указание также на существование танталовых бронз типа Ва ТаОз. [c.488]

    В настоящее время применяют бронзовые покрытия двух составов, содержащие 10—20% и 40—45%) 5п. Осаждение бронзовых покрытий ведут преимущественно из цианистых электролитов. Гальванические бронзовые покрытия, содержащие 10% 5п, применяют для имитации золота, а 15—20% 5п исключительно с целью защиты от коррозии. Так, изделия, покрытые этим сплавом и работающие в пресной воде при высоких температурах, сохраняются дольше, чем оцинкованные. Гальваническое покрытие белой бронзой, содержащей 40—45% 5п, применяют для защитно-декоративных целей. Высокооловянистая бронза имеет белый цвет и по внешнему виду напоминает серебро, но в отличие от последнего, обладает высокой твердостью. Твердость белой бронзы в 5—6 раз выше твердости меди. Белая бронза прекрасно полируется и хорошо отражает свет. Коэффициент отражения ее составляет 65— 66%, т. е. выше, чем у хрома. Сплав хорошо переносит атмосферное воздействие, устойчив по отношению к сульфидам (в отличие от серебра), удовлетворительно противостоит действию органических кислот, входящих в состав пищевых продуктов. [c.210]

    НЫХ продуктов. Например, л-бромтолуол дает при взаимодействии с натрием нормальный продукт реакции — 4,4 -диметилдифенил — в смеси с 3,4 -диметилдифенилом, дибензилом и п-бензилтолуолом. Побочные продукты, вероятно, получаются в результате изомеризации образующегося в начале арилнатрия fг- Hз 6H4Na н миграции натрия к другие положения ядра, а также в боковую цепь. Ульман обнаружил, что производные дифенила получаются лучше в присутствии порошкообразной меди или медной бронзы при высоких температурах. Так, высококипящий иодбензол превращается при кипячении с медью в дифенил, но этот углеводород может быть получен гораздо легче по способу, описанному ранее (см. 18.3). [c.334]

    Реакционную смесь выливают в охлажденный до 0° раствор 200 г (1,2 мол.) иодистого калия в 200 мл воды. Через несколько минут добавляют 1 г медной бронзы (примечание 2) при непрерывном перемешивании и раствор медленно нагревают на водяной бане. Температуру поддерживают при 75—80° до тех пор, пока не прекратится выделение азота. Иодфенол при этом выделяется в виде тяжелого темноокрашенного масла. По охлаждении до комнатной температуры реакционную смесь извлекают три раза порциями по 165 мл хлороформа и соединенные вытяжки промывают разбавленным раствором тиосульфата. Растворитель отгоняют на водяной бане, а остаток перегоняют в вакууме, причем п-иодфе-нол собирают при 138—140°/5 мм. Однократная перекристаллизация из 2 л нефтяной фракции (т. кип. 90—110°) дает бесцветный продукт с резкой температурой плавления 94°. Выход продукта после перекристаллизации 153—159 г (69—72% теоретич.). [c.289]

    Моновольфраматы Са н Na, паравольфрамат аммония-промежут. продукты в пронз-ве W и WO3. Вольфраматы Na н К используют в произ-ве вольфрамовых бронз (см. Бронзы оксидные). Моновольфраматы Mg, d и Zn входят в состав люминофоров. BajWOg перспективен для изготовления термокатодов. Моновольфраматы РЗЭ (плавятся в интервале 1030-1580°С)-компоненты лазерных материалов, моновольфраматы d и ТЬ-кристаллич. матрицы лазеров. Двойные В. щелочных металлов и РЗЭ-люминофоры. [c.424]

    Металлокерамические фильтры наиболее тнироко применяются для выделения из горячих газовых потоков ценных пьпе-видных продуктов, например пылевидных катализаторов, и используются в энергетических ядерных реакторах для очистки СОг, служащего теплоносителем, в контурах рециркуляции и в системах продувки и аварийного сброса газа в атмосферу Для ядерных реакторов используются элементы из хромистой стали, а для других целей — из бронзы [c.197]

    Броматометрическил титрованием определяют Sb в свинцовых 11088, 1553], свинцово-оловянных [1245], свинцово-оловянносурьмяных [262, 1030], медно-кадмиевых [846], алюминиево-сурьмяно-галлиевых [202, 760], цинково-кадмиево-сурьмяных I1274], цинково-сурьмяно-теллуровых [650], сурьмяно-оловянно-свинцово-хромовых [1404], полупроводниковых [452] и типографских сплавах [821], оловянных бронзах [1244], катализаторах [376], ртутно-сурьмянистых рудах [597], олове [1244], платиновых металлах [400], антимоните и арсените скандия [337], цилинд-рите [538], тетраэдрите [1413], гальванических золото-сурьмяных ваннах [899], цинке [1244], гипергенных металлах [653], свинцовых рудах и продуктах их переработки [484], органических соединениях [1665]. [c.35]


Смотреть страницы где упоминается термин Бронзы продукты: [c.288]    [c.247]    [c.585]    [c.193]    [c.93]    [c.247]    [c.74]    [c.107]    [c.88]    [c.420]    [c.19]    [c.42]   
Морская коррозия (1983) -- [ c.277 ]




ПОИСК





Смотрите так же термины и статьи:

Бронзы



© 2025 chem21.info Реклама на сайте