Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дисперсные реологические

    Реологические свойства пластичных смазок. Пластичные смазки по определению являются пластичными аномально вязкими телами. Их реологические свойства значительно сложнее, чем у жидких масел (жидкостей), что определяет коренные различия условий оптимального применения масел и смазок [284]. Пластичные смазки представляют собой дисперсные системы класса псевдогелей. Частицы загустителя (мыла, парафин, церезин, пигменты), имеющие коллоидные размеры, образуют структурный каркас смазки, подобный губке. Поры каркаса удерживают дисперсионную среду — жидкое масло.-Наличие жесткого структурного каркаса наделяет смазки свойствами твердого тела. [c.271]


    VII. СТРУКТУРНО-МЕХАНИЧЕСКИЕ СВОЙСТВА И РЕОЛОГИЧЕСКИЙ МЕТОД ИССЛЕДОВАНИЯ ДИСПЕРСНЫХ СИСТЕМ [c.355]

    Основные положения доклада сформулированы автором следующим образом. Асфальтены и нефтяные смолы суть две группы, составляющие коллоидно-дисперсную часть сырой нефти. Эти две группы веществ различаются между собой по составу, строению-размерам частиц и свойствам. При переработке нефти коллоидные частицы концентрируются в остатках от перегонки, не претерпевая существенных изменений в структуре. Асфальтены содержат преобладающее количество содержащихся в нефти неуглеводород -ных компонентов. Нефтяные смолы построены почти исключительно из углеводородов. Рассматривается состав смол и асфальтенов и причины их сильно различающихся реологических свойств, а так же влияние поверхностно-активных свойств веществ, содержащихся в асфальтенах, на смачивающие свойства битумов. Нельзя не согласиться с утверждением Г. Неймана, что многие свойства асфальтенов, прежде всего поверхностно-активные, часто довольно сильно меняются при отсутствии существенных изменений в химическом составе и структуре последних, что изменения этих свойств могут быть обусловлены наличием в асфальтенах примесей свободных нафтеновых кислот и редкоземельных солей нафтеновых кислот. Справедливо и утверждение о гетерогенности асфальтенов и нефтяных смол, а также о их слабой изученности. Однако два основных вывода доклада Г. Неймана о чисто углеводородном составе нефтяных смол и об отсутствии изменений в строении смол и асфальтенов при высокотемпературной переработке нефти, нахо- [c.41]

    Реологические свойства и дисперсность остатков атмосферной перегонки (мазутов) [c.33]

    Несмотря на большое количество работ и разнообразие подходов в области реологии структурированных дисперсных систем, пока еще нет удовлетворительной количественной теории, связывающей реологические свойства тел с особенностями их структуры. Чтобы представить, хотя бы упрощенно, процесс образования (появления) структуры в дисперсных системах, обратимся к особенностям седиментационных объемов, отличающим агрегативно устойчивые и неустойчивые системы. [c.374]

    Изменение реологических свойств и дисперсности нефтяных остатков после удаления асфальтенов и части смол [c.32]

    Явление фиксации пространственного положения частиц вследствие возникновения контактных связей между ними получило название структурообразования дисперсных систем . Суспензии, в которых появились пространственные цепочки из частиц, называют структурированными. Структурирование радикально изменяет реологические свойства суспензий. Как правило, структурированные суспензии обладают свойствами неньютоновской жидкости. [c.146]


    Реология — наука о деформациях и течениях материалов под действием внешних сил. Ее методы могут быть использованы для изучения структуры и свойств эмульсий. Слабо концентрированные эмульсин ведут себя подобно простым жидкостям. С увеличением концентрации эмульсии частицы дисперсной фазы начинают взаимодействовать друг с другом, флокулируют, могут образовывать пространственные структуры и агрегаты. Это приводит к изменению вязкоэластичных свойств эмульсий. Однако реологические свойства эмульсий определяются не только их концентрацией. В работе [2] приводятся следующие основные составляющие эмульсии и связанные с ними факторы, которые могут влиять на ее реологическое поведение. [c.12]

    Исследование реологических свойств нефтяных дисперсных систем. 273 [c.9]

    ИССЛЕДОВАНИЕ РЕОЛОГИЧЕСКИХ СВОЙСТВ НЕФТЯНЫХ ДИСПЕРСНЫХ СИСТЕМ [c.273]

    В зависимости от состава и температуры нефть и ее фракции могут образовывать дисперсные системы, приобретая свойства неньютоновских жидкостей, в связи с чем изучению их реологических свойств (прочности и устойчивости против расслоения) придается большое значение. [c.21]

    Б. РЕОЛОГИЧЕСКИЕ СВОЙСТВА ДИСПЕРСНЫХ СИСТЕМ [c.370]

Рис. VII. 12. Реологические кривые для дисперсной системы охра — вода с различным содержанием охры. Рис. VII. 12. <a href="/info/15556">Реологические кривые</a> для <a href="/info/2488">дисперсной системы</a> охра — вода с различным содержанием охры.
    Какая реологическая модель иллюстрирует пластические свойства дисперсных систем Какими параметрами характеризуют прочность структур  [c.204]

    Разбавленные агрегативно устойчивые дисперсные системы не образуют пространственной сетки из частиц дисперсной фазы (структуры), и поэтому их реологические свойства близки нли подобны свойствам дисперсионной среды. Зависимость вязкости таких систем от концентрации дисперсной фазы описывается уравнением Эйнштейна  [c.185]

    Для оценки реологических характеристик дисперсных систем наибольшее распространение нашли ротационные вискозиметры, которые характеризуются широкими пределами измерений и высокой воспроизводимостью результатов. Рабочий узел таких вискозиметров чаще всего представляет собой два коаксиальных цилиндра (кроме комбинации цилиндр — цилиндр могут применяться конус — конус, полусфера— полусфера и т. д.), в зазор между которыми наливается исследуемая жидкость. Один из цилиндров неподвижен, другой приводится во вращение. У некоторых типов приборов вращается наружный цилиндр, я у других — внутренний. [c.191]

    Часть 1. Исследование влияния концентрации дисперсной фазы на реологические свойства суспензий [c.193]

    По расчетным данным строят реологические кривые течения у — = 1(Р) и эффективной вязкости r] = f P). По кривым течения определяют предел текучести Рг для каждого образца суспензии, строят график зависимости Рт от концентрации дисперсной фазы и анализируют полученные результаты. [c.193]

    Как классифицируют дисперсные системы по их реологическим свойствам Приведите типичные кривые течения для них. [c.204]

    Структурно-механическая прочность и агрегативная устойчивость нефтяных дисперсных систем. Одной из основных проблем коллоидной химии нефтей и их фракций является исследование, пространственных структур различного рода в нефтяных дисперсных системах и регулирование разнообразными приемами их механических свойств деформационных и прочностных. Необходимость решения данной проблемы способствовала становлению самостоятельной области коллоидной химии — физико-химической механики нефтяных дисперсных систем. Обобщение значительного эмпирического материала позволило в работе [112] предложить с точки зрения макрореологии (диаграмму изменения структурномеханической прочности с ростом температуры в многокомпонентных нефтяных дисперсных системах (рис. 5). Участок ВГ, имеющий различную ширину в зависимости от строения исследуемой нефтяной системы и вырождающийся в точку для битумов, характеризует ньютоновское поведение в полностью разрушенной структуре, вязкость которой не зависит от скорости сдвига. Точка В отвечает пределу текучести системы. С понижением температуры нефтяная система становится тгересыщенной по отношению к твердым углеводородам, выделение которых из однородного с реологической точки зрения расплава приводит к структурированию системы. На участке БВ взаимодействие формирующихся структурных элементов обуславливает вязкопластическое течение обратимо разрушаемой структуры и наличие предельного напряжения сдвига в точке Б. По мере снижения температуры на этом участке скорость формирования коагуляционных контактов мел ду надмоле- кулярными структурами превышает скорость их разрушения под действием механической нагрузки. В точке Б нефтяная система те- [c.38]

    Наибольшее практическое значение имеют структурно-механические, или реологические, свойства буровых жидкостей. Специфика коллоидно-дисперсных и микрогетерогенных систем предопределяет их промежуточное положение между истинно твердыми и истинно жидкими телами. Они обладают вязкостью, пластичностью, упругостью и прочностью. Важнейшей особенностью коллоидных систем является аномалия вязкости. Их вязкость не является постоянной величиной, а зависит от градиента скорости. Для многих коллоидных систем, образующих пространственные структуры, характерно наличие предела текучести, т. е. напряжения сдвига, ниже которого движение не происходит. Аномалия обусловлена наличием в коллоидных системах структурных сеток, образуемых дисперсной фазой. [c.5]


    Напомним, что соотношение алканов и аренов в топливных смесях при прочих равных условиях определяет дисперсность, реологические свойства, интенсивность межмолекулярных связей. Последняя топливная композиция по величине этого параметра (=3,4) занимает промежуточное положение между смесями на основе КГФЗК (0,61) и ДТЗ (2,61). [c.16]

    Испытания печатных красок проводятся для определения степени соответствия ее показателей нормам, регламентируемым стандартами и техническими условиями, либо для выбора оптимальных режимов печатания, обеспечивающих требуемое качество печатного оттиска и, наконец, с целью предусмотрения необходимых средств для подготовки краски к использованию. Нами определялись некоторые технологические характеристики растворов высокомолекулярных соединений нефти в минеральных маслах с целью оценки их пригодности для использования в качестве печатных красок. Смеси приготавливали с использованием масла МП-12, в которое добавляли 10% мае. ВМС. Растворение ВМС проводили при темпера1урах от 90 до 140°С в течение 30 минут при перемешивании, В процессе закрепления краски на оттиске част1. растворителей и низкомолекулярных компонентов связующего впитывается в поры бумаги. При этом возможны также проникновение в поры бумаги краски, а также коагуляция пигментов на поверхности бумаги. Последние два обстоятельства оказывают существенное влияние на качество оттиска. Определяющими показателями качества красок в этих случаях являются их дисперсность, реологические характеристики, агрегативная устойчивость против расслоения. С увеличением дисперсности системы, то есть с уменьшением размеров агрегатов частиц пигментов, увеличивается степень их проникповения б поры бумаги. От концентрации частиц и [c.265]

    Для обеспечения возможности комплексной оценки структуры нефтяных остатков, их структурно-механической устойчивости и опре-. деления численных значений показателей по эмпирическим зависимостям (1-1)-(1-7) необходимо знание компонентного состава, распределения компонентов по размерам молекул, частиц и ассоциатов, закономерностей изменения реологических свойств и показателя дисперсности, плотности и ряда других показателей физико-химических свойств. От степени информации по указанным показателям зависит выбор эффективных и рациональных способов воздействия на сырье каталитического гидрооблагораживання с целью перевода его в активное состояние- К числу таких способов воздействия следует отнести такие технологические приемы, как испарение и осаждение, приводящие к изменению соотношения объема дисперсионной среды и дисперсной фазы- Рассмотрим основные экспериментальные методы, используемые в исследовательской практике для оценки вышеуказанных показателей. [c.30]

    В последнее время интенсивно развиваются методы, основанные на идеях, заимствованных из статистической физики, которые позволяют учесть хаотичный характер расположения частиц. Начало использованию статистических методов в механике суспензий было положено Бюр-герсом [96]. Далее методы статистического осреднения были развиты в работах Тэма [113] и Бэтчелора [114-116]. На наш взгляд, наиболее законченную фюрму эти методы приобрели в работах Буевича с сотрудниками [ 96, 117-119] и Хинча [120]. Главная идея, лежащая в основе указанных методов, состоит в том, что законы сохранения и реологические соотношения, описывающие некоторое произвольное состояние системы частиц (конфигурацию расположения центров частиц), должны усредняться по ансамблю возможных состояний системы. Такой ансамбль полностью описьгаается функцией распределения P t, Сдг), которая представляет собой плотность вероятности конфигурации N частиц в ЗЖ-мерном фазовом пространстве, образованном компонентами радиус-векторов Р центров частиц jv = . При этом среднее значение локальной физической величины 0(t, r ), которая связана с точкой г дисперсной системы и определяется конфигурацией jV, дается выражением [c.69]

    Полученные уравнения сохранения принципиально не отличаются от уравнений (2.3) (2.4). Однако усреднение микроскопических" реоло гических соотношений позволяет получить конкретные выражения для среднего тензора эффективных напряжений в дисперсной смеси 2 и средней силы межфазного взаимодействия Д .д. При этом оказывается, что макроскопические реологические соотношения, получаемые [c.69]

    При выборе типа воздействия из определенного класса, например акустического, необходимо учитывать конкретные свойства исходных материалов и конечных продуктов процесса (структурно-механических, акустических, реологических и др.). В общем случае могут быть использованы частотные критерии и временнью зависимости. Для некоторых процессов (диспергирование фаз) спектральные характеристики воздействия предопределяют вид кривой распределения дисперсной фазы. [c.110]

    Из большого арсенала разработанных к настоящему моменту методов наиболее адекватную информацию о состоянии НДС тяжелого состава можно получить лишь при помощи неразрушающих методов, не связанных с добавлением растворителей или наложением интенсивных механических нагрузок на исследуемые нефтяные системы. Методы типа гель-нроникающей хроматографии, фотоколориметрии, седиментационные, реологические и другие методы являются малопригодньп и для точного измерения сфуктурных характеристик НДС и определения точек фазовых переходов. Они частично разрушают надмолекулярную структуру исследуемых систем, изменяют толщину и химический состав сольватных оболочек, а также приводят к диссоциации, либо рекомбинации части соединений, существенно искажая характеристики исследуемых нефтяных систем. Использование разрушающих методов, по словам некоторых исследователей, является лишь первым пробным шагом в изучении структурных превращений в НДС. Наиболее приемлемыми в этом отношении являются некоторые спектральные методы, а также различные виды микроскопии, которые, конечно же, не могут удовлетворить весь спектр исследований в области нефтяных дисперсных систем, но вполне достаточны для целей данной работы. [c.9]

    Эмульгирующий агент химический состав, потенциальная энергия взаимодействия между каплями концентрация и растворимость сплошной и дисперсной фаз, тип эмульсии, инверсия эмульсии, солюбилизация жидких фаз в мицеллах толщина пленки, адсорбированной на каплях, и ее реологические свойства, деформация капель при сдвиге циркуляция жидкости внутри капель электровязкостный эффект. [c.12]

    Состояние таких коллоидных систем оказывает решающее влияние иа физико-механические свойства вообще и на реологические свойства в особенности. Это имеет очень важное значение для решения трудных и ответственных задач технологии нефти и исиользова-иия таких нефтепродуктов, как технические битумы, топочные мазуты, консистентные смазки и т. п. При рассмотрении подобных коллоидных систем часто недостаточно учитывают качественные особенности их основных компонентов и почти совсем не учитывают роль нефтяных смол как равноправного компонента (наряду с углеводородами) дисперсной системы. Между тем эти факторы оказывают весьма существенное влияние на всю систему в целом, на ее физико-механпческие свойства, которые и определяют в основном технические качества таких иродуктов. [c.495]

    Реологические свойства (структурно-механические свойства, температура застывания, вязкость и др.) НДС зависят в первую очередь от ее физического состояния, на которое оказывает влияние соотношение энергий межмолекулярного взаимодействия и теплового движения. Нефтяные дисперсные системы могут находиться в трех физических состояниях вязкотекучем (жидком), высокоэластическом и твердом. Способность к вязкому течению таких продуктов, как битумы, пеки, используют для пх внутризаводского транспортирования по трубопроводам. Для НДС характерно высокоэластическое состояние в интервале между температурами стеклования и вязко текучестн (температуры размягчения). [c.18]

    Реологические показатели таких дисперсных систем регулируют изменением соот1Юшения объемов дисперсной фазы и дисперсионной среды, что следует из видоизмененной формулы Эйнштейна  [c.39]

    В соответствии с взглядами, изложенными в гл. I, в общем случае могут существовать четыре состояния нефтяных дисперсных систем в зависимости от температуры обратимо структурированные жидкости молекулярные растворы необратимо структурированные жидкости твердая пена. Процессами физического и химического агрегирования можно управлять изменением следующих факторов отношения структурирующихся компонентов к неструк-турирующимся, температуры, времени протекания процесса, давления, растворяющей силы среды, степени диспергирования ассоциатов применением механических способов, электрических и магнитных полей и др. В результате действия этих факторов происходят существенные изменения — система из жидкого состояния переходит в твердое, и наоборот. Все эти стадии могут быть исследованы реологическими методами путем центрифугирования, седиментации, а также оптическими, электрическими и другими методами. [c.138]

    В тяжелых нефтях и нефтяных остатках асфальтены диспергированы в высокомолекулярных углеводородах (смолы и масла), образуя коллоидную микрогетерогенную систему с предельно высокой дисперсностью, а следовательно, с очень большой поверхностью дисперсной фазы и дисперсионной среды. Реологические свойства таких систем определяются соотношением между конденсируюши-мися, полимеризующимися и дисперсно-структурными компонентами регулированием количества этих компонентов достигается необходимая структурно-механическая прочность нефтяных остатков. [c.56]

    Укрупнение частиц может идти двумя путями. Один из них, называемый изотермической перегонкой, заключается в переносе вещества от мелких частиц к крупным, так как химический потенциал последних меньше (эффект Кельвина). В результате мелкие частицы постепенно растворяются (испаряются), а крупные растут. Второй путь, наиболее характерный и общий для дисперсных систем, представляет собой /соаг(/ля <и/о, заключающуюся в слипании (слиянии) частиц дисперсной фазы. В общем смысле под коагуляцией понимают дотерю агрегативной устойчивости дисперсной системы. Коагулящ я в разбавленных сИЖМах приводит к потере, седимеитационной устойчивости и в конечном итоге к расслоению (разделению) фаз. К процессу коагуляции относят адгезионное взаимодействие частиц дисперсной фазы с макроповерхностями. В более узком смысле коагуляцией называют слипание частиц, процесс слияния частиц получил название коалесценции. В концентрированных системах коагуляция может проявляться в образовании объемной структуры, в которой равномерно распределена дисперсионная среда. В соответствии с двумя разными результатами коагуляции различаются и методы наблюдения и фиксирования этого процесса. Укрупнение частиц ведет, нанример, к увеличению мутности раствора, уменьшению осмотического давления. Структурообразование изменяет реологические свойства системы, например, возрастает вязкость, замедляется ее течение. [c.271]

    Зависимость скоростп коагуляции от концентрации электролита показана на рис. VI. 17. Из этого рисунка следует, что введение электролита в дисперсную систему снижает потенциальный барьер, который при быстрой коагуляции (максимальной скорости) становится равным нулю. Порог коагуляции существенно зависит от момента его фиксирования, от метода наблюдения за коагуляцией (изменение рассеяния света, реологических свойств н др.) и от концентрации золя, поэтому необходимо всегда подробно указывать условия определения этой величины. [c.333]

    На рис. VH. 11 представлены реологические кривые суспензий кварца в смеси тетрахлорэтана и тетрабромэтана ( 2H2 I4 + + С2Н2ВГ4), имеющих одинаковую концентрацию дисперсной фазы 12,5% (об.) и разные количества воды, добавленной для обеспечения коагуляции в системе. Коагулирующее действие воды обусловлено образованием водных слоев вокруг частиц кварца (так как кварц гидрофилен) и коалесценцией этих слоев вместе с частицами. Как видно из рис. VII. 11, устойчивая система (сухое масло) имеет практически ньютоновское течение. С ростом содержания воды и соответственно неустойчивости системы она приобретает пластические свойства с увеличивающимся пределом текучести — прочность структуры возрастает. [c.375]

    Размеры рассмотренных участков реологической кривой могут быть самыми различными в зависимости от природы системы и условий, при которых проводят испытания механических свойств (например, температуры). В коагуляционных структурах систем с твердой дисперсной фазой предел упругости растет с увеличением концентрации частиц и межчастичного взаимодействия. В этом же наиравлении уменьшается область текучести. Для материалов, имеющих кристаллизационную структуру, например для керамики и бетонов, характерны большая (по напряжениям) гуковская область деформаций и практическое отсутствие области текучести — раньше наступает разрушение материала (хрупкость). Поэтому им не свойственны ни ползучесть, ни тиксотропия. Для полимеров с конденсационной структурой наиболее типичны релаксационные явления, включая проявление эластичности, пластичности и текучести. Доля Гуковской упругости в них возрастает с ростом содержания кристаллической фазы. Наличие области текучести у полимеров объясняют разрушением первоначальной структуры и возникновением определенного ориентирования макромолекул, надмолекулярных образований и кристаллитов. По окончании такой переориентации наблюдается некоторое упрочнение материала, а затем с ростом напряжения материал разруилается. В какой-то степени промежуточными реологическими свойствами между свойствами керамики и полимеров обладают металлы и сплавы. У них меньше области гуковской упругости (по напряжениям), чем [c.380]

    До сих пор шла речь, в основном, вообще о структурно-механических (реологических) свойствах свободнодисперсных и связнодисперсных систем, обладающих коагуляционной и конденсационно-кристаллизационной структурой. Вместе с тем эти системы объедиияют большинство различных природных и синтетических материалов, используемых в народном хозяйстве. Поэтому знание общих закономерностей образования систем с определенными структурно-механич ескими свойствами помогает находить методы управления такими свойствами конкретных материалов. К важнейшим материалам относятся металлы, сплавы, керамика, бетоны, пластмассы и др. Как уже указывалось, их реологические свойства описываются типичной для твердообразных систем зависимостью деформации от напряжения (см. рис. VII. 15). Несмотря на небольшую пористость или даже ее отсутствие, все эти материалы полученные в обычных условиях, являются дисперсными система ми. Их структуру составляют мельчайшие частицы (зерна, кри сталлики), хаотически сросшиеся между собой. Технология пере численных материалов, как правило, предусматривает предвари тельный перевод исходного сырья в жидкообразное состояние которое позволяет различными методами регулировать структур но-механические и другие свойства продукта. Технологам, занимающимся получением материалов, очень важно знать механизм образования тех или иных структур, а также методы регулирования их свойств, в частности механических. [c.382]

    Назовите два основных типа структур дисперсных систем (классификация Ребиндера). Как они образуются (проиллюстрируйте по-тенцнальной кривой взаимодействия частиц) и чем отличаются их реологические характеристики Приведите примеры реальных структур различных типов. [c.204]

    Работы Партса. Значение информации о реологии при изучении диэлектрических свойств дисперсных систем впервые отмечено Пар-тсом (1945). При исследовании суспензий угольного порошка в лаках он заметил, что емкость системы растет со временем после прекращения движения в ней. На рис. У.67 сравниваются результаты, полученные для двух образцов, один из которых был более тиксо-тропен, чем другой. Парте предположил, что диэлектрические свойства связаны с реологическими и образование агломератов является причиной наблюдаемых характеристик. [c.405]

    Многие свойства смазок зависят от свойств дисперсионной среды. Природа, химический, групповой и фракционный составы дисперсионной среды существенно влияют на структурообразование и загущающий эффект дисперсной фазы, а, следовательно, на реологические и эксплуатационные свойства смазок. Ог свойств дисперсионной среды зависят работоспособность смазок в определенных интервалах температур, силовых и скоростных нагрузок, их окисляемость, коллоидная стабильность, защитные свойства, устойчивость к агрессивным средам, радиации, а также набухаемость контактирующих со смазками изделий из резины и полимеров. Низкотемпературные свойства смазок (вязкость при отрицдтельных температурах, пусковой и установившийся щзутящие моменты) зависят от вязкости дисперсионной среды при низких температурах, а испаряемость — от молекулярной массы, фракционного состава, температуры вспышки дисперсионной среды и продолжительности температурного воздействия. [c.309]

    Важнейшие технологические свойства промывочных жидкостей плотность, реологические и фильтрационные характеристики, смазочно-охлаждающая способность, активность и инертность по отношению к разбуриваемым породам — регулируются комплексом физико-химических воздействий на отдельные фазы или дисперсную систему в целом в процессе их иолучения и использования. Наибольшее распространение в этом комплексе [юлучили обработка химическими соединениями неорганического и органического состава, разбавление и концентрирование, механохимическая активация и перемешивание при тепловом воздействии или без него. Лабораторные и опытно-промышленные испытания проходят такие методы воздействия на промывочные жидкости, как омагничива-ние , ультразвуковая и электрическая обработка, [c.65]

    Структурообразование в дисперсных системах в условиях ие-црерывиого разрушения структуры изучается с помощью специальных вискозиметров, позволяющих измерять вязкость при различных скоростях потока жидкости или наблюдать изменение вязкости во временн прн фиксированной скорости потока (при фиксированном градиенте скорости сдвига). Приборы, основанные на первом принципе, используют для получения реологических констант тамгюиажпых растворов, которые необходимы при гидравлических расчетах. Подобные измерения можно производить только во время стадии И, когда структурно-механические свойства портландцементной суспензии меньше изменяются во времени. Для изучения кинетики структурообразования тампонажных растворов в условиях непрерывного разрушения структуры применяются приборы, называемые консистометрами. Они фиксируют сопротивление, оказываемое суспензией перемешиванию при постоянной частоте вращения мешалки. Измеряемая величина, называемая консистенцией, характеризует эффективную вязкость суспензии прл интенсивности перемешивания, примерно соответствующую реальным условиям цементирования глубоких скважин. [c.110]


Смотреть страницы где упоминается термин Дисперсные реологические: [c.33]    [c.89]    [c.145]    [c.355]   
Курс коллоидной химии (1976) -- [ c.313 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ полной реологической кривой концентрированных дисперсных систем

Вязкость и общее понятие о реологических свойствах дисперсных систем

Вязкость. Реологические свойства дисперсных систем

Дисперсные системы реологические

Дополнение 3. Структурно-реологические свойства дисперсных систем Щукин

МЕТОДЫ РЕГУЛИРОВАНИЯ СТРУКТУРНО-РЕОЛОГИЧЕСКИХ СВОЙСТВ ДИСПЕРСНЫХ СИСТЕМ

Нефтяные дисперсные системы свойства реологические

О реологических свойствах дисперсных систем

ОСНОВНЫЕ МЕТОДИКИ ОПРЕДЕЛЕНИЯ РЕОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК СТРУКТУРИРОВАННЫХ ДИСПЕРСНЫХ СИ-СТЕМ

ПОЛНАЯ РЕОЛОГИЧЕСКАЯ КРИВАЯ ТЕЧЕНИЯ И МОДЕЛИРОВАНИЕ РЕОЛОГИЧЕСКИХ СВОЙСТВ ДИСПЕРСНЫХ СИСТЕМ

Реологические

Реологические исследования взаимодействия частиц в разбавленных дисперсных системах

Реологические свойства дисперсных систем с трехмерной структурной сеткой

Смородинский Э. Л. Численный метод решения задачи ламинарного течения и теплообмена пластичных дисперсных систем при переменных реологических свойствах

Структурно-механические свойства и реологический метод исследования дисперсных систем

Структурно-реологические свойства высококонцентрированных дисперсных систем



© 2025 chem21.info Реклама на сайте