Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кетоны пропил

    Окисление более тяжелых углеводородов, начиная с гексана, приводит к образованию весьма сложной смеси продуктов, из которой очень трудно выделить индивидуальные соединения. Поэтому углеводороды тяжелее Се подвергают окислению только в том случае, когда продукт реакции находит применение непосредственно в виде смеси. В самом деле, даже некаталитическое окисление пропана и бутана в паровой фазе при 270—350 " С и давлении от 3,5 до 200 атм приводит к получению очень широкой гаммы продуктов, что наглядно иллюстрируется табл. ХП1 . Помимо продуктов, перечисленных в этой таблице, реакционная смесь содержит кислоты Сх—С4, спирты Сг—С,, кетоны С3—С,, окись этилена, простые эфиры, ацетали, альдоли и т. д. [306, 307]. Соотношение между отдельными соединениями и классами соединений в реакционной смеси может колебаться в широких пределах и зависит от условий реакции. Наибольший выход продуктов окисления соответствует температуре реакции 150—250° С. При более высоких температурах интенсивнее протекают не только реакции окисления, но и реакции крекинга и пиролиза. Так, образование бутиленов достигает максимума нри 375° С, а образование этилена и пропилена — при 700° С (давление во всех случаях атмосферное). С ростом температуры одновременно происходит падение выходов продуктов окисления [307]. [c.585]


    Технологическая схема промышленного процесса газофазного нитрования пропана представлена на рис. 13.6. Азотная кислота впрыскивается насосом через форсунки в поток паров пропана, пропускаемый через нитратор 3. На выходе из реактора поток газов, пройдя холодильник 7 и конденсатор 8, направляют в нижнюю часть абсорбера 9, орошаемого раствором солянокислого гидроксиламина для связывания альдегидов и кетонов. Из верхней части абсорбера газовая смесь [около 85% СзН и 10% (об.) N0] поступает в блок регенерации 10 [c.439]

    Источники загрязнения окружающей среды. При окислении н-бутана выбросы в атмосферу состоят в основном из бутана, пропана, этана и др. Источником загрязнения сточных вод является стадия очистки, после которой в сточные воды попадают уксусная кислота, различные спирты, альдегиды, кетоны, эфиры, органические кислоты, сложные эфиры и другие высококипящие примеси. [c.273]

    Приведите схемы реакций кетонного и кислотного расщепления 1) ацетоуксусного эфира, 2) пропил-ацетоуксусного эфира. Объясните механизм этих реакций. [c.88]

    Соотношение между количествами метанола и высших спиртов зависит от условий проведения реакции. С увеличением времени контакта это соотношение уменьшается, однако полностью устранить образование метилового спирта не удается. Из высших спиртов получены этиловый, н-пропиловый, изопропиловый, изобутиловый, 2-метил-н-бутанол, первичный 2-метил-пентанол, 2,4-диметилпентанол-1, 4-метилгексанол-1, 3-метил-втор-бутанол и 2,4-диметил-втор-бутанол. Наблюдалось также присутствие следов альдегидов и кетонов, соответствующих этим спиртам. Этиловый, н-пропило-вый и вторичные спирты образовывались в небольших или в незначительных количествах основными продуктами являлись изобутиловый спирт и высшие спирты с разветвленной цепью. [c.57]

    Приведенные правильности в ходе окисления кетонов, данные Е. Вагнером, позволяют на основании продуктов окисления делать заключение о строении исходного кетона. Возьмем, например, изомерный этил-изобутил-кетону пропил-изопропил-кетон. На основании правильностей Вагнера, он будет окисляться в двух направлениях  [c.233]

    Окисление газообразных парафинов (С —С4). В настоящее врем , опубликованы данные о промышленном применении окисления метана в формальдегид, природных газов, содержашлх углеводороды С1—С4, в метиловый спирт и формальдегид пропана и бутана в соответствующие спирты, альдегиды, кетоны и кислоты с тем же, что в сырье, или меньшим числом углеродных атомов) изобутана в гидроперекись трет-бутйла. [c.141]


Фиг. 79. Схема переработки в спирты и кетоны пропена и бутена газоля. Фиг. 79. <a href="/info/24616">Схема переработки</a> в спирты и кетоны пропена и бутена газоля.
    Частичное окисление СНГ. При окислении отдельных углеводородов, особенно олефинов, наблюдается тенденция к образованию смеси сложных соединений. Однако преимущества гомогенной фракции по сравнению с неразогнанной смесью СНГ не всегда можно использовать. Окисление смеси СНГ, осуществляемое обычно в присутствии катализаторов, в итоге приводит к образованию избытка определенных химических соединений, откуда возникает проблема разделения продукта реакции и сырья. Хотя процесс разгонки сырья не является простым (в первую очередь из-за того, что точки кипения различных компонентов исключительно близки друг к другу), идентичный процесс окисления смесей СНГ с последующей разгонкой продуктов применяется довольно редко. В эксплуатации находятся четыре завода, работающих по этим технологиям, из которых три функционируют в США,, а один в Канаде. Все они принадлежат компаниям Селанеа Корпорейшн и Ситиз Сервис . На одном из заводов осуществляется частичное окисление пропана—бутана без катализатора при недостатке воздуха, температуре 350—450 °С и давлении 303— 2026 кПа. Реакция идет в паровой фазе. Основными продуктами являются формальдегид, метанол, ацетальдегид, нормальный про-панол, уксусная кислота, метилэтиловые кетоны и окислы этилена и пропилена. На другом заводе окисление происходит в жидкой фазе в присутствии растворителя. Основной продукт — уксусная кислота с некоторым количеством побочных продуктов метанола, ацетальдегида и метилэтиловых кетонов. Могут быть подобраны такие режимы, при которых в основном будут образовываться метилэтиловые кетоны. Сепарация продуктов в первом случае основана на различной растворимости веществ одни растворимы только в воде, другие — в углеводородах. Спирты и альдегиды сепарируются из кислот при щелочной экстракции, а отдельные соединения разделяются фракционной разгонкой. [c.245]

    Опытам на окисление предшествовали широкие исследования работы вихревой трубы при различных температурах воздуха на входе (до 400°С), обсуждение которых не входит в нашу задачу. В качестве реактора использовали теплоизолированную из стали 10 вихревую трубу 0 20,4x5 мм длиной рабочей зоны 208 мм, с диаметром сопла ТЗУ 2,6 мм, с диафрагмой 5,2 мм. Параметры потоков измеряли термопарами и образцовыми манометрами в расширительных камерах расход газа (0- 20 нм /ч) на входе в вихревой ректор и выходе нагретого потока измеряли расходомерами типа РЭД со вторичными приборами типа ЭПИД. Хроматографический анализ окисляемого газа проводили для каждого опыта, содержание пропана составляло от 52,5 до 60,8% масс. Продукты реакции в охлажденном и нагретом потоках определяли на групповое содержание альдегидов, кетонов, спиртов и кислот по известным методикам [61]. Схема установки приведена на рис. 1.8 (раздел 1). Условия первого опыта (табл. 2.12) не обеспечили начало реакции, что следует и из рекомендации работы [60], [c.127]

    Основным достоинством этого процесса являются его простота и экономичность, так как пропан одновременно является и растворителем, и хладоагентом. Кроме того, пары пропана используют и для отдувки осадка на фильтре. Это позволяет исключить из схемы линию инертного газа. При депарафинизации пропаном вследствие малой вязкости раствора при низких температурах скорость охлаждения значительно выше, чем при использовании кетонов. В процессе охлаждения, особенно остаточного сырья, совместная кристаллизация твердых углеводородов и смолистых веществ приводит к образованию крупных дендритных кристаллов, что обеспечивает высокую скорость фильтрования — до 600— 1000 кг/(м2-ч) по сырью из расчета на полную поверхность фильтра. [c.185]

    В настоящее время таутомерию понимают как динамическунэ изомерию — равновесие форм, способных легко переходить друг в друга. При более внимательном рассмотрении можно установить, что резкой границы между таутомерией и изомерией не существует. Так, кетонная и енольная формы ацетоуксусного эфира, находящиеся в таутомерном равновесии при комнатной температуре, при охлаждении до —70 °С становятся устойчивыми, раздельно существующими изомерами. В обычных условиях антарктической зимы здесь пришлось бы говорить уже не о таутомерии, а об изомерии. С другой стороны, бромистый пропил и бромистый изопропил при обычных условиях устойчивые, раздельно существующие изомеры. При нагревании до 250 °С между обоими веществами устанавливается таутомерное равновесие  [c.275]


    В результате распада оксиалкильного радикала образуются альдегиды и кетоны. Так, при нитровании пропана протекают реакции  [c.438]

    Жидкий пропан применяется не только как растворитель, но и как охлаждающий агент вследствие его легкой испаряемости. Растворимость парафина в пропане больше, чем в кетоне, поэтому температурный градиент довольно велик и равняется 15—20°. Допускается большая скорость охлаждения пропановых растворов масла. Вязкость растворов очень мала, и отделение церезина идет легко содержание масла в отделенном церезине невелико. Охладить раствор можно испарением части пропана. Недостатком является повышенное давление — до 10—14 ати, так как при низких давлениях пропан газообразное вещество. [c.369]

    Производство нефтехимических продуктов и полупродуктов включает получение синтетических спиртов (этилового, пропило-вого, бутилового и др.), фенола и ацетона из кумола, альдегидов и кетонов, стирола, окиси этилена, этиленгликоля, синтетических кислот и др. Эти производства размещаются как на нефтеперерабатывающих и нефтехимических предприятиях, так и на химических. Использование нефтяного сырья позволило значительно увеличить выпуск продукции и снизить ее себестоимость. [c.16]

    Если подвергаемое окислению соединение содержит только вторичные и первичные углерод-водородпые связи, то основным продуктом реакции является кетон. Так, пропан может быть превращен в ацетон с выходом последнего 75% при употреблении смеси пропана, кислорода и бромистого водорода в отношении 2 2 1. Конверсии подвергаются примерно 75% от первых двух компонентов, причем регенерируется около 83% катализатора. Температура процесса несколько выше температуры, необходимой для окисления изобутана (190° вместо 160° С в последнем случае), и максимальный расход катализатора также больше. В таких условиях около 8% пропана превращается в пронионовую кислоту. Между механизмом образования кетона и приведенным выше механизмом окисления углеводородов с разветвленной цепью можно провести четкую параллель  [c.275]

    Гетерогенным и гомогенным окислением газообразных метановых углеводородов получают альдегиды, кетоны, спирты. Так, окис-лон1 ем метана кислородом воздуха в присутствии окислов азота получают формальдегид. При окислении пропана и бутана в жидкой фазе воздухом в присутствии ацетатов металлов образуется смесь спиртов, альдегидов и кетонов. [c.59]

    Переходя к практическому применению приведенных выше теоретических основ низкотемпературного окисления парафиновых углеводородов, можно указать на незначительный пробел в использовании парафинов между фракцией Сд—С4 и твердыми парафинами (выше g ), Следует отметить, что фирмы Селаниз Корпорейшн и Ситиз Сервис Компани проводят большую работу по окислению пропана и бутана с целью получения алифатических кислот, кетонов и подобных соединений. Однако эти операции проводятся, по-видимому, при гораздо более высокой температуре (выше 300° С), чем рассмотренные в данном обзоре, и об этой работе опубликовано мало литературных данных. Целесообразно завершить данную статью кратким описанием промышленного процесса окисления твердого парафина, применявшегося, в Германии. [c.279]

    Как известно, реакция протекает только в присутствии кислот. Мак-Кензи и Стокер [11] на примере взаимодействия этилортоформиата с кетонами в спиртах выше этилового (пропило- [c.49]

    K N K N+ H2O+HjO- Hj (OH) N+ + KOH Добавление азотной кислоты и нитрата серебра, титрование цианида серебра раствором роданида в присутствии Fe(IH) Мешают ацетальдегид, новый альдегид не кетоны пропио- мешают [c.125]

    Предложены в качестве растворителей для депарафинизации различные смеси кетонов с пропаном или пропиленом дихлорме-тана или хлористого пропила с дихлорэтаном хлороформа, четы-)еххлористого углерода, пиридина, нитро- и хлорнитроалканов, -метилпирролидона и метилэтилкетона с толуолом р-хлорэфира с дихлоридами и др. [43, 44, 45, 51]. Несмотря на явные достоинства многих из этих растворителей пока отсутствует их крупно-тоннажное производство кроме того, многие из них токсичны и коррозионно-агрессивны. [c.145]

Фиг. 101. Схема переработрш в спирты п кетоны пропена и бутена газоля. Фиг. 101. Схема переработрш в спирты п кетоны пропена и бутена газоля.
    Растворители обычно состоят из полярных компонентов (оса-дителей парафина) и неполярных (углеводородных) компонентов— разбавителей масла. Полярные компоненты растворителя осаждают парафин из охлаждаемого раствора сырья. Поскольку масляная часть сырья плохо растворяется в полярных растворителях, к ним добавляют неполярные компоненты, способствующие растворению масла. Кетоны, спирты, хлорпроизводные и альдегиды являются полярными веществами в качестве неполярных компонентов могут использоваться простейшие ароматические углеводороды (бензол, толуол), углеводороды метанового ряда (пропан, гептан и др.), непредельные углеводороды (пропилен) и др. В некоторых процессах применяют растворитель, состоящий только из полярного (высшие кетоны, метилэтилкетон, дихлорэтан) или только из неполярного (пропан, гептан и др.) компонента. Иногда растворитель состоит из смеси двух полярных компонентов, например дихлорэтана с дихлорметаном (процесс Ди-Ме), метилэтилкетона с метилизобутилкетоном, ацетоном и др. Природа применяемого растворителя оказывает существенное влияние на эффективность, обеэмас и 1я. Так, при использовании для переработки дистиллятного сырья пропана необходимо к сырью добавить модификаторы кристаллической структуры. В противном случае образуются тонкие пластинчатые кристаллы парафина, трудно отделяемые от жидкой фазы. [c.112]

    Получите спирты реакцией Гриньяра, исходя из а) формальдегида и бромистого изопропилмагния б) уксусного альдегида и бромистого отор-бутилмагния в) метилэтил кетона и бромистого пропил-магния. [c.165]

    На нефтеперерабатывающем заводе в Эдмонтоне (Альберта, Канада) построена новая промышленная установка депарафинизации масел метил-к-пропил-кетопом [124]. Кетон применяется в этом случае без отдельного растворителя для масла, аналогичного толуолу, используемому в обычном процессе депарафинизации метилэтилкетон-толуолом. Установка депарафинизации производительностью 320 м /сутки, работающая на смеси метил-и-бутил- и метил-м-пропплкетонов, пущена на втором заводе в Канаде (в Сарнии) в конце 1938 г. [87]. [c.231]

    Мети л пропил кетон Мети ли зон ропил кетон [c.136]

    Наиишите формулы и назовите по заместительной номенклатуре а) пропил-бутил-кетон б) бутил-изобутил-кетон в ) изопропил-треот-изобутил-кетон. [c.42]

    При депарафинизации полярноактивными растворителями, к которым относятся кетоны, дихлорэтан, спирты и др., получаются следующие преимущества перед применением углеводородных растворителей — нафты, пропана, гексановой или гептановой фракции обеспечивается меньший температурный градиент, допускается более быстрое охлаждение раствора уменьшается [c.370]

    При получении третичных спиртов из магнийорганических соединений и кетонов также может происходить побочная реакция восстановления исходного кетона. Так, например, при взаимодействии бензофеиона с бромистым ызо-пропил-магнием образуются, кроме нормального продукта реакции — третичного спирта,— [c.255]

    Как и экстракция растворителями, значительное вниманне привлекали новые методы депарафинизации на суш ествуюш их установках, в частности осуществляемые с нрименеиием растворителей тина кетонов и пропана [6]. [c.255]

    ПОЛИАКРИЛАМИД (ПАА, ПАМ) [ СН2-СН(СОНН2)-] , мол. м.(4-5)-10 раам 165 С раств. в воде, формамиде, диэтилсульфоксиде, не раств. в спиртах, кетонах, неполярных р-рителях. При нагрев, выше 120—130 °С происходит имидизация с потерей р-римости. Получ. радикальной, радиационной полимеризацией и фотополимеризацией акриламида в р-ре и массе (в кристаллич. состоянии). Примен. флотореагент для увеличения нефтеогдачи пласта компонент состава для пропит- [c.453]


Смотреть страницы где упоминается термин Кетоны пропил: [c.282]    [c.448]    [c.9]    [c.272]    [c.585]    [c.358]    [c.842]    [c.366]    [c.147]    [c.185]    [c.51]    [c.502]    [c.137]    [c.196]    [c.139]    [c.204]    [c.336]   
Промышленное применение металлоорганических соединений (1970) -- [ c.74 ]




ПОИСК





Смотрите так же термины и статьи:

Пропей

Пропен



© 2025 chem21.info Реклама на сайте