Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Горные кадмия

    Мы только сошлемся на исследования в области осцилло-графической [199] и амальгамной [212, 213] полярографии для определения таллия и теоретические рабогы по полярографии таллия [137, 201, 653], а также на работы по полярографическому определению малых количеств таллия в породах [207], металлическом кадмии или цинке [207, 382, 422, 735, 812, 813], воздухе [150], в биологических материалах [658, 868, 880, 886, 915, 920], свинце [459, 583], индии [239, 514], горных породах [383] и других объектах [9, 62, 142, 332, 349, 372, 403, 450, 463, 476, 551, 608, 669, 797]. [c.114]


    Плавиковая кислота растворяет некоторые металлы с образованием фторидов. Практически нерастворимы в воде фториды кальция, бария, стронция, РЗЭ труднорастворимы фториды меди, никеля, кадмия и хрома (111), все остальные фториды, в том числе AgF легкорастворимы. Кислота применяется для разрушения силикатных горных пород, растворения металлов (тантала, циркония, ниобия и др.). Плавиковая кислота растворяет цинк и железо очень медленно свинец, медь и серебро не реагирует с золотом и платиной. [c.300]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]


    Нитхромазо применен для определения сульфатной серы в экстракционной фосфорной кислоте [49], в лимонной и винной кислотах [175], в котловой воде [51], сточных водах гальванических цехов, в электролитах меднения, хромирования [22] и матового никелирования [237], в теллуристых растворах [483] для определения серы в трехсернистой сурьме [481 ], в полупроводниковых пленках на основе сульфида и селенида кадмия [485], в сульфидах урана [166], в горных породах и минералах [1467], в углеродистых материалах [267] для определения серной кислоты в газах контактных сернокислотных цехов [53] и в башенных газах в присутствии окислов азота [199] для оценки содержания серы в удобрениях [47], овощах [258], биологических материалах 378], расти,-тельных объектах [257] для определения серы в фосфор- и мышьяксодержащих органических соединениях [50, 304]. [c.93]

    При определении сульфидной серы не рекомендуется тонко растирать пробу и держать ее в растертом виде, так как возможно окисление сульфидной серы в сульфатную. Определение пиритной серы может быть проведено по методу Остроумова и Иванова-Эмина [355], сущность которого состоит в восстановлении пиритной серы до сероводорода металлической ртутью в присутствии НВг. Сероводород поглощают раствором ацетата кадмия, сульфид кадмия переводят добавлением сульфата меди в сульфид меди, который отфильтровывают, промывают и прокаливают до окиси меди. Влияние сульфатов, частично восстанавливающихся в условиях метода, устраняется добавлением бромистого бария. Так как содержание серы в горных породах незначительно, часто ограничиваются определением общего ее содержания, представляя результат в пересчете на элементную серу [383]. [c.191]

    Особенно большое повышение чувствительности достигается при импульсной термической атомизации твердых проб — из навески 15 мг можно определять в горных породах 2-10- %Сс1 (0,00003 мкг ). Пробу, смешанную с угольным порошком, испаряют при 1850° С в электроконтактном нагревателе типа испарителя нерезонансное поглощение учитывают по линии кадмия [c.130]

    Определение низких содержаний кадмия в рудах сложного состава проводят после его отделения на анионите ЭДЭ-ЮП. Метод рекомендован для горных пород, содержащих 0,0005— 0,5% d, до 10% РЬ и до 5% Sb. [c.166]

    Метод дуги переменного тока использован для определения галлия в солях редких щелочных металлов [502], фосфиде бора [22], свинце [161], сере [505, 507], в рудах и концентратах алюминия, цинка, свинца и меди [125, 185, 1362], бокситах [185], золе углей [185], силикатах [130, 872, 873] и других горных породах 1333], в сернистых (материалах [1333], глинах [1272, 1334], угольном порошке [1286], в олове высокой чистоты [558], металлическом индии [909], г( рючих сланцах [942], двуокиси кремния и кварце [206], селене [506, 508] и в кадмии высокой чистоты (156  [c.159]

    Сильные и частые ветры, весьма характерные для территории Зауралья, являются причиной мощной дефляции выветрелой части материала с поверхности отвалов. В результате происходит загрязнение площадей прилегающих к предприятию сельскохозяйственных угодий минеральной пылью. Кроме того, буро-взрывные работы, проводимые в карьерах и шахтах, представляют собой разрущение горных массивов, при котором образуются различные гранулометрические фракции, в том числе и минеральная пыль. Пыль обогащена цинком и кадмием (табл. 43). Концентрацию данных элементов можно объяснить тем, что одним из основных минералов отвалов является сфалерит, обладающий более низкой плотностью (4,00 г/см ) по сравнению с другими рудными минералами (пирит — 5,15 г/см ) и легче переносимый воздушными потоками. [c.280]

    Попов М. А. Определение цинка и кадмия в рудах и горных породах в полевых условиях. Зав. лаб., 1947, 13, № 5, с. 618—619. [c.202]

    По данным с несколькими эталонами строят градуировочный график зависимости Q от концентрации определяемого вещества. Чем выше концентрация, тем меньше Q. Метод рекомендуется для определения бора в горных породах, кадмия в сплавах и др. [92, 94]. [c.26]

    Метод рекомендуется для определения кадмия в рудах и горных породах при содержании кадмия от 0,0005 до 0,5%, свинца до 10%, сурьмы до 5%. [c.30]

    Распространекие и добыча. Содержание цинка в земной коре составляет (в мае. долях) 8-10 %, кадмия 1,3-10 и ртути 8-10- "%. Минералы, содержащие эти элементы, представляют собой преимущественно сульфиды цинка — цинковая обманка, или сфалерит, кадмия — гринокит и ртути — киноварь. Цинк встречается также в виде карбоната (галмей) и силиката (виллемит). Кадмий является спутником цинка и содержится всегда в цинковых рудах. Ртуть иногда встречается в самородном состоянии в виде вкраплений в горные породы. Цинковые и кадмиевые руды имеются во всех частях света. Месторождения ртути известны з Испании, Италии, С1ПА, в Южной Америке и в СССР (Донбассе). [c.333]


    Концентрация свободных атомов элемента зависит не только от его концентрации в анализируемом растворе, но и от степени диссоциации молекул, в виде которых он вводится в пламя или же образующихся в результате химических реакций, протекающих в плазме. Вследствие этого при атомно-абсорбционном определении элементов, дающих термически устойчивые оксиды, например алюминия, кремния, ниобия, циркония и других, требуются высокотемпературные пламена, например ацетилен — оксид азота (N20). Тем не менее в низкотемпературных пламенах (пламя пропан — воздух) атомизируется большинство металлов, не излучающих в этих условиях вследствие высоких потенциалов возбуждения их резонансных линий медь, свинец, кадмий,, серебро и др. Всего методом атомной абсорбции определяют более 70 различных элементов в веществах различной природы металлах, сплавах, горных породах и рудах, технических материалах, нефтепродуктах, особо чистых веществах и др. Наибольшее применение метод находит при определении примесей и микропримесей, однако его используют и для определения высоких концентраций элементов в различных объектах. К недостаткам атомно-абсорбционной спектрофотометрни следует отнести высокую стоимость приборов, одноэлемеитность и сложность оборудования. [c.49]

    Методом атомпо-абсорбционной спектрофотометрии определяют Sb в различных материалах, в том числе в алюминии и его сплавах [954, 1469], геологических материалах, минеральном сырье и горных породах [97, 732, 863, 954, 1338, 1391, 1485, 1638], железных рудах, железе, чугуне, стали и ферросплавах [888, 954, 1069, 1140, 1141, 1601], меди и медных сплавах [1392, 1534, 1673], мышьяке и его сплавах [1534], никеле, никелевых сплавах и соединениях [954, 955, 1594], олове и его сплавах [1354], оловянносвинцовых припоях [1166], свинце, его сплавах и солях [267, 268, 1354, 1450], галенитах [1387], сплавах редких и цветных металлов [1140, 1321], полупроводниковых материалах [265, 1122], рудах [97, 1511, 1601, 1638], почвах [1391, 1594, 1638], силикатных материалах,. керамике и стеклах [652, 1587], чистых веш,ествах [315],. солях ш,елочных и ш,елочноземельных металлов [387], природных и сточных водах [1123, 1209, 1213, 1367], плутонии [1622], солях цинка и кадмия [387], синтетических волокнах [1321], пиш,евых продуктах [1367], пистолетных пулях [948], добавках к нефтепродуктам [1563], химических реактивах и препаратах [264—266, 268, 387]. [c.93]

    Г Вернемся к рассмотрению материалов на основе классификации их па составу. Группа неметаллических неорганических ма--териалов также весьма обширна, как и группа органических материалов. Она включает разнообразные керамические материалы, как кислородсодержащие (фарфор, стекло, керамика на основе чистых тугоплавких оксидов алюминия, тория, магния, иттрия, бериллия и др., керамика сложного состава со специальными свойствами), так и бескислородные (нитриды, бориды и силициды, прозрачная керамика на основе халькогенидов цинка и кадмия, фторидов РЗЭ). Среди них важное место занимают силикатные цементы и бетоны, графитовые материалы (графопласты и графолиты, пироуглерод), а также солеобразные материалы на основе фосфатов и галогенидов. Неорганические материалы можно также разделить на две группы — природные и искусственные. Первые используют для изготовления крупногабаритных сооружений в виде самостоятельного конструкционного материала или в качестве футеровки металлических корпусов различных аппаратов. Горные породы — незаменимый конструкционный материал, в частности для химического производства (башни йодно-бромного производства, поглощения газообразного хлористого водорода и т. д.), а также в качестве наполнителей в производстве вяжущих силикатов — кислотоупорных цементов и бетона. Природные материалы трудно обрабатывать механически, что приводит к громоздкости выполненных из них сооружений. [c.145]

    Сплав свинца и кадмия Оловянно-свинцовые сплавы Железо п сталь Редкоземельные элементы Металлургические остатки, содержащпе свинец, кадмий, цинк Минералы и руды Горные породы Биологические материалы Другие случаи [c.323]

    Разработан атомно-абсорбционный метод определения хрома и других элементов с предварительным их обогаш ением путем соосаждения с 8-оксихинолинатом кадмия в присутствии органических комплексообразующих веществ [789]. Микроколичества хрома в природных водах определяются после концентрирования Сг04 на анионите AG-1X4 и элюирования раствором, содержащим 30 мл i М Na l ж iO мл 0,5 М раствора соли Мора в 1 М НС1 [945]. Анализ фосфатных горных пород на содержание хрома проводится с предварительным отделением мешающих примесей на катионите Дауэкс-50 WX8 в Na -форме [803]. Сг(1П) окисляют до r(VI) раствор подщелачивают до pH 12 и пропускают через колонку. [c.94]

    Следы кобальта (а также меди, никеля, цинка и кадмия) определяют в горных породах полярографическим методом [1339] после отделения меди, никеля, кобальта, цинка и кадмия от мешающих элементов в виде рубеанатов, последующего осаждения нитрозонафтолата кобальта. [c.182]

    Некоторые металлы принадлежат к рассеянным элементам, т. е. редко встречаются в концентрированном виде, а обычно содерх<атся в небольших концентрациях в различных горных породах. Так, ванадий в заметных количествах присутствует в различных природных силикатах (например, в граните) и сульфидах. Германий в небольших концентрациях содержится в свинцово-цинковых рудах, а также в каменном угле, из золы которого его извлекают в виде оксида германия. Кадмий является примесью к цинку в цинковых рудах. Соединения некоторых металлов в небольших концентрациях содержатся в океанской воде и в воде некоторых горячих источников. [c.170]

    При определении d (Bi, Hg и Tl) в горных породах 1 г пробы облучают 3 дня в реакторе с / = 6-10 нейтрон см -сек и выдерживают 7 дней. Затем пробу в присутствии 30 мг носителей разлагают HF с добавлением H2SO4. Раствор выпаривают почти досуха, растворяют в 0,5 М НС1 и сорбируют кадмий наколонке с анионитом Дауэкс-1 в С1 -форме. Затем кадмий элюируют дистиллированной водой и определяют активность d = 53 часа -у-ник при 0,53 Мае), чувствительность определения 0,001 мкг d/г [652]. [c.138]

    Процесс, разработанный Д. А. Вилсоном и Б. Дж. Вигардом мл., сообщение к. 7566, Вашингтон, Горное министерство США, 1971), предназначен для извлечения кадмия и никеля из лома аккумуляторных батарей. Отходы, содержащие [c.71]

    Экстракция с помощью дитизона применена для фотометрического определения меди в титане и титановых сплавах [257] меди и кобальта после их хроматографического разделения на силикагеле [258] меди, свинца и цинка в природных водах ивы-тяжках из почв [259] цинка и меди в биологических материалах [260] цинка в металлическом кадмии [261] и баббитах [262]. Экстракционное выделение дитизоната цинка использовано для последующего фотометрического определения цинка с помощью ципкона. МетЬд применен для определения цинка в чугуне [263]. Экстракционно-фотометрические методики определения кадмия с помощью дитизона предложены для определения кадмия в алюминии [264], нитрате уранила [2651 и металлическом бериллии [266]. Дитизонат таллия экстрагируют хлороформом. Содержание таллия определяют фотометрированием экстракта [267]. Аналогичным способом определяют таллий в биологических материалах [268]. Индий в виде дитизоната полностью экстрагируется хлороформом при pH 5 [269]. Экстракция комплекса индия с дитизоном применена для фотометрического определения индия в металлическом уране, тории, а также в их солях [270]. Свинец определяют в алюминиевой бронзе [271], теллуровой кислоте [272] и горных породах [273, 274] свинец и висмут — в меди и латуни [275], ртуть —в селене [276] серебро — в почвах, (методом шкалы) [277] ртуть — в рассолах и щелоках (колориметрическим титрованием) [278]. [c.248]

    Для сернистых соединений бензиновых и лигроиновых фракций известна схема анализа, предложенная Горным Бюро США 11]. По этой схеме меркаптаны определяют аргентометрическим титрованием. Сероводород удаляется подкисленным раствором хлористого кадмия, содержание сероводорода определяют по разности при ар-гентометрическом титровании до и после удаления. Элементарную серу извлекают при помощи бутилмеркаптана. Дисульфиды восстанавливают в уксуснокислой среде цинком в меркаптаны, которые определяют также аргентометрическим титрованием. [c.37]

    В обычном ходе анализа горных пород кадмий, если он не присут ствует в очень больших количествах, проходит через весь ход анализа незамеченным, так как он не осаждается ни аммиаком, ни оксалатом аммония в присутствии хлорида аммония, а осаждение его в виде фосфата в сильноаммиачных растворах происходит очень медленно и неполно. [c.296]

    Среди элементов, присутствующих в сточных водах горных предприятий, экологически наиболее опасны не сами типоморфные элементы месторождений — медь, цинк, свинец, а микроэлементы-спутники, такие как кадмий, ртуть, мышьяк, сурьма, имеющие минимальные ПДК в питьевой воде. Эти элементы опасны еще в связи с тем, что большая их часть подвержена процессам метилирования с образованием различных форм Сс1(СНз)+, Н (СНз) , Аз(СНз) , токсичность которых на порядок и более выше, чем у простых катионных форм. В связи с распространением этих элементов в подземных водах известны массовые случаи отравления населения мышьяком и ртутью (на Урале и в некоторых рудных районах западных штатов США) [Крайнов и др., 2004]. [c.272]

    Поступление кадмия и кобальта в гидролитосферу происходит со сточными водами горно-обогатительной, машино- и приборостроительной, теплоэнергетической, угледобывающей промышленности. В пульпу обогатительных комбинатов они переходят из обогащаемых руд. Предприятия машино- и приборостроительной, а также электротехнической промыишенности сбрасывают кадмий в составе стоков гальванических цехов, осуществляющих кадмирование изделий. Присутствие кобальта характерно для дренажных вод угледобычи. Согласно данным [87а], средняя концентрация кобальта в шахтных водах угольных месторождений СССР составляет 0,3 мг/л при максимальном его содержании 6,61 мг/л. [c.305]

    Гидратация газообразного диацетилена была изучена на твердом промышленном кадмий-кальцийфосфатном катализаторе (Горн и Горин [720]). При молярном отношении в катализаторе (СаО + d0)/P20g =2,90 в температурных пределах от 340 до 400° С вода присоединяется к диацетилену по приведенной выше схеме и основным продуктом является диацетил. На образование промежуточного ацетилацетилена указывало отложение полимерных продуктов на катализаторе. Глубина превращения диацетилена в этих условиях 37—55% она зависит от температуры и от степени разбавления диацетилена водой и практически не зависит от разбавления его ацетиленом. Лучшие результаты были получены при пропускании над катализатором 8%-ной смеси диацетилена с азотом при разбавлении ее водой (1 12) в течение 20— 25 мин. с объемной скоростью по диацетилену около 140 час" при 400-410° С. [c.148]

    Агеенков В. Г., Торопова Т. Г. и Дашкова М. П. Ускоренные способы определения кадмия в цинковых концентратах и заводских продуктах. Тр. Сев.-Кавк. горно-металлург. ин-та, 1948, вып. 5, с. 114—124. [c.120]

    Серебренников В. В. Некоторые замечания об осаждении редкоземельных элементов аммиаком и ш авелевой кислотой в общем ходе полного количественного анализа горных пород. Уч. зап. (Томский ун-т), 1948, № 8. с. 111—123. Библ. 13 назв. 5518 Серебренников В. В. и Карпов А. М. Ферроцианидный метод последовательного определения цинка и кадмия в кадмиевых электролитах. Уч. зап. (Томский ун-т), [c.212]

    Экстракция дитизоном была применена для определения следов цинка в металлическом кадмии [62, 614], никеле [284, 1144], уране [684], сурьме [369], галлии высокой чистоты (галлий отделяли в виде HGa l4) [1452], солях различных элементов, не осаждаемых сероводородом [1276], в чугуне н стали [139, 602], двуокиси германия [1150], кислотах [1430], горных породах [960, 1451], метеоритах [736], при- [c.222]

    Свинец, цинк, медь, ванадий. Основные запасы свинца и цинка сосредоточены в комплексном месторождении полиметаллических руд Цумеб, расположенном в северной части страны, в горном районе Отави. Оруденение приурочено главным образом к тектоническим нарушениям, брекчированным зонам и кон-тактам доломитов с интрузивными породами. Месторождение относится к метасоматическому типу — замещения в доломитах. Оно представлено крутыми трубообразными телами. Главное рудное тело занимает площадь 1000—1500 м . Руды состоят в основном из пирита, халькопирита, борнита, сфалерита, галенита, энаргита, тетраэдрита, халькозина, германита. Кроме свинца, цинка и меди, руды содержат некоторые количества ванадия, кадмия, германия, галлия, серебра. [c.157]

    Сендэл [21] разработал методы, основывающиеся на применении дитизона для определения никеля, кобальта, меди, цинка, кадмия и свинца в двухграммовой навеске порошка горной породы, но эти методы, повидимому, не столь хороши для определения значительных количеств никеля и меди. При высоком содержании марганца полнота извлечения тяжелых металлов тоже становится сомнительной. [c.174]

    Таким образом, геохимия уже больше не зависит в столь сильной мере от описательной минералогии и от данных, полученных при химическом анализе горных пород и минералов, а твердо основывается на развитии атомной физики и законов кристаллохимии. Законы атомной решетки объясняют существование таких хорошо известных в геологии ассоциаций, как медь, кобальт, никель и, в частности, медь и железо цинк, железо, марганец ими же объясняется постоянное совместное присутствие золота с серебром кадмия с индйем платины с железом, медью, мышьяком и молибденом и т. д. [c.236]

    Профессор физики во Фрейбургской горной академии Рейх в 1863 г. подверг исследованию цинковую руду из Гиммельсфюр-ста. После обжига руды для удаления серы он растворил руду в соляной кислоте и осадил сероводородом сульфид соломенно-желтого цвета, непохожего на цветни кадмия, ни других известных примесей в цинковой руде. [c.38]


Смотреть страницы где упоминается термин Горные кадмия: [c.139]    [c.40]    [c.145]    [c.400]    [c.396]    [c.140]    [c.175]    [c.384]    [c.422]    [c.92]   
Методы аналитической химии Часть 2 (0) -- [ c.0 ]

Полярографический анализ (1959) -- [ c.218 , c.251 ]

Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.640 ]




ПОИСК





Смотрите так же термины и статьи:

Горный



© 2025 chem21.info Реклама на сайте