Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кобальт цинка

    Значительное улучшение защитных свойств анодной ленки может быть достигнуто ее легированием, которое ожет быть достигнуто при формировании пленки из лектролита, содержащего ионы других металлов, или ри добавке солей различных металлов — ацетата магия, никеля, кобальта, цинка, сульфата марганца и др. [c.65]

    Марганец в рудах сопровождается обычно небольшими количествами железа, никеля, кобальта, цинка, а та-кже весьма нежелательного для металлургии фосфора. [c.280]


    Применяются различные методы очистки электролита от меди, железа, кобальта, цинка, свинца и других примесей. Очистка от меди чаш,е всего производится методом цементации порошком никеля (избыток никеля 1,4—1,6 против стехиометрического), который получают на самом заводе. В последнее время привлекает внимание метод экстракции меди жирными кислотами. Получаемый медный концентрат используется в обоих случаях. [c.292]

    Осаждение основных ацетатов и др. гидролитические методы осаждения. При анализе различных руд, шлаков и сплавов необходимо отделять алюминий и железо от марганца, никеля, кобальта, цинка и др. элементов. При осаждении гидроокисью аммония, как уже отмечалось, полного разделения не происходит, так как осадок гидроокисей алюминия и железа захватывает примеси других элементов. Кроме того, при большом избытке гидроокиси аммония заметные количества алюминия переходят в раствор в виде алюмината. К тому же обычный ход анализа может нарушаться вследствие присутствия фосфатов. [c.97]

    Метод электролитической очистки может быть применен для получения очень чистых никеля, кобальта, цинка, кадмия, индия и других металлов. [c.581]

    Изучите возможность нанесения электролитическим способом пленок меди, никеля, хрома, кобальта, цинка, олова,, алюминия, свинца или других металлов на железе (или других металлах). [c.371]

    Аммиакатами называют чрезвычайно обширный класс комплексных соединений, образуемых присоединением аммиака к положительным ионам металлов — серебра, меди, никеля, кобальта, цинка, кадмия и др. [c.523]

    Поскольку разделение двухкомпонентных смесей ионов с одинаковым зарядом тем полнее, чем больше величина коэ( ициента селективности, по данным табл. 7 возможно рассчитывать на четкое отделение никеля от меди или цинка, разделение смеси цинка и марганца, цинка и кобальта,-цинка и меди, а также некоторых других смесей. [c.136]

    Специфичность осаждения часто достигается регулированием pH раствора и применением комплексующих веществ. Например, ионы кальция в виде оксалата кальция нельзя осаждать в присутствии ионов свинца, никеля, кобальта, цинка, кадмия, марганца, церия, лантана, тория и некоторых других ионов. Однако при pH 4 комплексоном HI можно связать все указанные мешающие ионы и избирательно осаждать только ионы кальция. [c.148]

    По величине р/ аминокислоты разделяют па нейтральные, кислые п основные, боковые цепи которых соответственно имеют нейтральные, карбоксильные и основные группы (табл. 40). Аминокислоты проявляют характерные свойства нри взаимодействии с металлами, что имеет очень важное значение для накопления металлов в нефтях. Аминокислоты активно образуют комплексы с медью, кобальтом, цинком, никелем, ванадием и другими металлами. Например, [c.62]


    В процессе электролитического рафинирования чернового никеля или штейнов применяют сходные методы очистки электролита от ионов меди, железа, кобальта, цинка, свинца и др. [c.407]

    Висмут отделяют от никеля, кобальта, цинка, железа, марганца, урана, титана, трехвалентного и шестивалентного хрома, щелочноземельных и щелочных металлов и ортофосфор-ной кислоты осаждением сероводородом из слабокислого раствора. Перед пропусканием сероводорода прибавляют уксусную кислоту для предотвращения выпадения основной соли, II раствор разбавляют водой. Бихромат восстанавливается сероводородом до трехвалентного хрома с образованием серы. При отделении висмута от ортофосфорной кислоты анализируемое вещество растворяют в соляной кислоте [1107, стр. 121-123, 205, 237, 325]. [c.67]

    Хорошие результаты получают при отделении индия от марганца, никеля, кобальта, цинка, меди и кадмия гидролизом при помощи пиридина в присутствии аммониевых солей [62, 63]. [c.19]

    В марганцевых рудах определяют содержание гигроскопической влаги, марганца (общего), диоксида кремния, фосфора, серы, железа (а иногда еще меди и кобальта, цинка и свинца). [c.316]

    Индий хорошо экстрагируется в виде бромидного комплекса, например изопропиловым эфиром из 6 М бромистоводородной кислоты. Отделение индия в виде бромида менее селективно, чем в виде иодида. Вместе с индием в экстракт переходят галлий (III), железо (III), таллий (III) и др., цинк остается в водной фазе. (От металлов, образующих растворимые аммиачные комплексы — серебра, меди, никеля, кобальта, цинка, кадмия, индий можно отделить путем осаждения его аммиаком в виде 1п(0Н)з). [c.215]

    Экстракция дитизонатов кобальта, никеля, цинка и меди хлороформом из тартратных растворов с pH 9,5 исследовалась в работе [687]. Изучалась экстракция дитизонатов кобальта, цинка, кадмия и ртути при разных pH [174], экстракция дитизоната кобальта эфиром [1092]. [c.77]

    Смите также растворял перхлораты в абсолютном спирте, добавлял холодный насыщенный раствор уксуснокислого калия, отфильтровывал выделившийся КСЮ , промывал его абсолютным спиртом и взвешивал. По его данным, этот метод пригоден для определения перхлоратов лития, натрия, никеля, кобальта, цинка, свинца, алюмнния, хрома и железа. Для определения пер- [c.109]

    Выбор способа разложения пробы и переведения ее компонентов в раствор зависят от нескольких факторов, которые необходимо учитывать при обосновании схемы химического анализа. Прежде всего обращают внимание на неорганическую или органическую природу основы (матрицы) объекта, химический состав образца, химические свойства определяемого компонента. Так, при определении одного и того же элемента (например, кобальта, цинка, железа) в крови, пищевых продуктах или сплавах и минералах способ разложения образцов определяется со- [c.44]

    Разделение железа, кобальта, цинка и фосфора на синтетических ионитах [673]. [c.265]

    Комплексы полиакриловой кислоты с медью, никелем, кобальтом, цинком и др. [2257]. [c.333]

    Из слабокислого раствора поглощает не только анионы, но и катионы кобальта, цинка, кадмия и т. п., образуя комплексы. [c.51]

    Смеси металлов (никель) с окислами (ванадия, молибдена, циркония, кремния, алюминия, хрома) или (медь) с окислами (кадмия, кобальта, цинка, олова, магния, марганца) [c.6]

    Значительное улучшение защитных свойств анодной пленки может быть достигнуто ее легиропанием, которое может быть достигнуто при формировании пленки из электролита, содержащего ионы других металлов, или при добавке со тей различных металлов — ацетата магния, никеля, кобальта, цинка, сульфата марганца и др. В этом случае ионы электролита входят в структуру пленки, прочно с ней сцеплены и цовышают ее коррозионную стойкость. Особенно положительным оказывается влияние легирования на коррозионную стойкость пленки при образовании в ее структуре оклслов шпинельного типа. [c.65]

    При получении особо чистых электроотрицательных металлов — железа, никеля, кобальта, цинка, марганца и других требуется специальная глубокая непрерьивная очистка растворов, являющаяся неразрывным звеном циклического процесса (см. гл. УП, УПГ, IX). [c.571]

    В черной металлургии дальнейшее развитие производства стали будет происходить за счет внедрения кислородно-конверторного и злектросталеплавильного методов. В цветной металлургии предстоит совершенствовать технологию переработки руд и концентратов повысить комплексность и полноту использования минерального сырья ускорить внедрение автотенных, гидрометаллургических, микробиоло ических и других эффективных технологических процессов. Сильно возрастет производство алюминия, меди, никеля, кобальта, цинка, свинца, титана, магния, драгоценных металлов, вольфрама, молибдена, ниобия и других лег[фу1сших металлов. [c.353]

    Растворы после выщелачивания, помимо марганца, содержат некоторые количества железа, меди, свинца, мышьяка, никеля, кобальта, цинка и других примесей. Будучи значительно более электрополо ительными, чем марганец, они выделяются на катоде даже в случае весьма незначительного их содержания в растворе. Поэтому электролит необходимо тщательно очищать. [c.103]


    В качественном анализе для отделения катионов IH группы от катионон других групп применяется (NH4)2S. с катионами железа, никеля, кобальта, цинка и марганца (NH4)2S образует сульфиды, например  [c.243]

    Многие биохимические превращения настолько малозаметны и требуют столь малых количеств реагентов, что их не удавалось проследить до тех пор, пока не был изобретен метод меченых атомов. Его применение оказало большую помощь в исследовании химии живых систем, поскольку он позволяет проследить in vivo за судьбой следовых количеств различных химических элементов, поступающих в организм с пищей (например, кобальта, цинка, иода), без вскрытия живого организма. Одними из самых замечательных достижений в этой области стали работы Кальвина, установившего механизм фотосинтеза, а также Шенхеймера, который пока- ал, что любая ткань в организме непрерывно подвергается процессу разрушения и восстановления. [c.477]

    Содержание в почвах валового калия колеблется от 1,4 до 2,6%. Микро-элементный состав почв во многом определяется типом почвообразующих пород. Для покровных суглинков, имеющихся в регионе исследования, характерно повышенное содержание марганца (в среднем 600 мг/кг), ванадия (90 мг/кг), хрома (75 мг/кг), кобальта (10 мг/кг), никеля (26 мг/кг), меди (23 мг/кг), молибдена (3,15-3,3 мг/кг) [Добровольский, Урусевская, 1984 Беус и др., 1976]. Почвы, развитые над основными породами, обогащены никелем, медью, кобальтом, цинком [Беус и др., 1976]. На обогащенность почв Башкирии медью указывает также К. В. Ковальский (1974). Для характеристики мик-роэлементного состава почв приведены данные по химическому составу черноземов степей [Беус и др., 1976] (табл. 1.22). [c.31]

    Раствор доводят водой до 100 лл и выдерживают в течение часа при 50 , затем оставляют стоять не менее 4 час. или на ночь. Образовавшийся на дне хлопьевидный осадок рубеанатов меди, никеля (кобальта, цинка и кадмия) отфильтровывают через маленький фильтр (7 см) и промывают 1%-ным раствором хлористого аммония три раза по 5—6 мл, а затем таким же количеством воды. Фильтр с осадком слегка подсушивают и еще влажным переносят в маленькую кварцевую чашечку, смачивают 4—5 каплями серной кислоты, нагревают до озоления и прокаливают в муфеле при 500—600° для разрушения всего органического вещества. [c.388]

    В металлургии меди, никеля кобальта, цинка, олова, ртути сурьмы, Селена, теллура, мо либдеиа и благородных метал лов с получением ртути, селе на и теллура в виде возгонов [c.32]

    Биологическое включение иона железа (И) в протопорфирин IX катализируется экстрактами из самых разнообразных источников соответствующий фермент называется феррохелатазой [73]. В большинстве случаев для осуществления этого процесса необходимы анаэробные условия и присутствие восстановительных агентов типа глутатиона. Этот фермент способен также катализировать включение ионов других двухвалентных металлов, например кобальта, цинка, меди, марганца и никеля, но только кобальт и, в меньшей степени, цинк могут сравниться с железом по скорости включения. [c.658]

    Осаждение висмута в виде хлорокиси из слабоазотнокис-лого раствора позволяет количественно отделять висмут от меди, кадмия, кобальта, цинка и от всех элементов, которые не осаждаются сероводородом из кислого раствора. Однако полностью отделить висмут от трехвалентного железа, а также, вероятно, от алюминия и хрома не удается. При отделении [c.46]

    При взаимодействии серы с металлами образуются сульфиды. При комнатной температуре сера соединяется со ш елочными и ш е-лочноземельными металлами, а также с медью, серебром, ртутью при нагревании — со свинцом, оловом, никелем, кобальтом, цинком, марганцем, хромом, алюминием. С железом сера реагирует в присутствии влаги. Тугоплавкие металлы и металлы платиновой группы, за исключением платины, взаимодействуют с серой при высокой температуре и в мелкораздробленном состоянии. [c.18]

    ИЛИ 3H6Ni2Na202-3H20 (молекулярная масса 378,21), представляет собой оранжевый порошок, растворимый в воде, -ЭТИЛОВОМ п метиловом спиртах. Водный раствор реагента устойчив в течение нескольких месяцев, разрушается при действии минеральных кислот. При pH 1 — И реагент образует с ионами меди (II) комплекс фиолетового цвета. При титровании раствором комплексона III комплекс разрушается, и в точке эквивалентности окраска раствора переходит в зеленую. Двухзарядные ионы никеля, кобальта, цинка, кадмия, свинца в аналогичных условиях образуют с реагентом ярко окрашенные комплексы. При титровании в слабокислой среде определению содержания меди не мешают большие количества алюминия и марганца. [c.87]

    Прямое титрование. Анализируемый раствор разбавляют в мерной колбе дистиллированной водой до метки, тщательно перемешивают, берут аликвотную часть пипеткой и переносят в коническую колбу для титрования. Титрование проводят в щелочной среде при pH л 10. Для этого в колбу приливают аммонийный буферный раствор. Титруют стандартным раствором ЭДТА. В качестве индикатора используют хромоген черный специальный ЕТ-00, мурексид или другие индикаторы. При прямом титровании ЭДТА концентрация определяемого иона постепенно понижается, а около точки эквивалентности очень резко падает. Происходит мгновенное изменение окраски индикатора. Прямым титрованием определяют катионы бария, стронция, кальция, магния, никеля, кобальта, цинка, железа (III), меди и др. [c.315]

    Ряд комплексонометрнческих методик определения кобальта в присутствии мешающих катионов основан на применении маскирующих средств. Так, для определения кобальта в присутствии свинца и марганца поступают следующим образом [458]. К исследуемому раствору прибавляют несколько кристалликов гидрокснламина, несколько миллилитров триэтаноламина и избыток раствора комплексона 111. Затем титруют раствором сульфата магния, определяя таким способом суммарное содержание всех трех катионов. Затем прибавляют раствор цианида калия и титруют раствором сульфата магния выделившийся комплексон 111, количество которого эквивалентно количеству кобальта. Определение кобальта в присутствии цинка, кадмия, а также магния, кальция, лантана, марганца, свинца, индия проводят так [458]. Катионы кобальта, цинка и кадмия маскируют раствором цианида калия и затем оттитровывают раствором комплексона 1П остальные катионы. После этого демаскируют цинк и кадмий прибавлением формальдегида [997] или хлоралгидрата, которые количественно реагируют со свободным цианидом, а также с цианидом, связанным в комплексы с цинком и кадмием. Далее указанные катионы оттитровывают раствором комплексона III. Наконец, титруют сумму всех катионов без всяких добавок и по разности находят содержание кобальта. [c.126]

    Следы кобальта (а также меди, никеля, цинка и кадмия) определяют в горных породах полярографическим методом [1339] после отделения меди, никеля, кобальта, цинка и кадмия от мешающих элементов в виде рубеанатов, последующего осаждения нитрозонафтолата кобальта. [c.182]

    Опыт показывает, что, изменяя pH раствора, очень часто можно провести последовательное осаждение и разделение различных катионов при помощи одного и того же органического осадителя. Так, например купферрон из сильнокислых растворов осаждает только ионы ниобия, тантала, титана, циркония, ванадия, железа (HI), олова и позволяет отделять их от неосаждающихся в тех же условиях ионов алюминия, хрома, урана (VI), бериллия, марганца, никеля, кобальта, цинка, фосфора, бора. [c.356]

    При титровании гексаметилендитиокарбаматом и тионали-дом применяют висмут в качестве индикатора, что позволяет увеличить резкость конечной точки, так как соединение висмута с указанными реактивами окисляется с большей скоростью, чем свободный реактив. Определению палладия при этом не мешают, в определенных пределах по отношению к нему, ионы следующих элементов платины, родия, иридия, меди, железа, серебра, никеля, кобальта, цинка, свинца. [c.278]


Смотреть страницы где упоминается термин Кобальт цинка: [c.223]    [c.39]    [c.395]    [c.519]    [c.245]    [c.651]    [c.38]   
Методы аналитической химии Часть 2 (0) -- [ c.0 ]

Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.924 ]




ПОИСК







© 2024 chem21.info Реклама на сайте