Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Циклобутана образование в реакциях

    Циклобутан реагирует с водородом в присутствии катализатора с образованием н-бутана, однако для этого требуется более высокая температура (200 °С), чем для гидрирования циклопропана (80 °С). Циклобутан не вступает в реакцию с остальными реагентами, под действием которых раскрывается циклопропановое кольцо. Таким образом, циклобутан вступает в реакции присоединения труднее, чем циклопропан, а последний — труднее, чем пропилен. Однако примечательнее всего сам факт, что циклоалканы вообще вступают в реакции присоединения. [c.269]


    Дегидроциклизация олефинов Се и выше с образованием производных бензола — хорошо исследованный процесс (см. гл. VH). Что же касается циклизации пропилена в циклопропан, бутена-1 в циклобутан, пентена-1 в циклопентан, то к этим реакциям время от времени обращаются исследователи, поскольку они представляются наиболее простыми для синтеза труднодоступных циклопарафинов, особенно циклопропана и циклобутана. Превращение олефинов в циклопарафины следует рассматривать как один из видов изомеризации — кольчато- [c.214]

    Циклопропан и циклобутан существенно активнее из-за наличия напряжения, они легко вступают в реакции присоединения с раскрытием кольца и образованием ациклических продуктов. [c.139]

    Физические и химические свойства. Ц. весьма сходны со свойствами соответствующих алканов. Это бесцветные газы (циклопропан) или жидкости, а высшие гомологи —твердые вещества. Трех- и четырехчленные кольца относительно менее устойчивы, чем Ц. с большим числом углеродных атомов, поэтому для них характерны реакции, сопровождающиеся раскрытием цикла. Для Ц. с большим размером цикла характерны те же реакции, что и для алканов (радикальное замещение). Циклопропан легко гидрируется и при 120 °С присоединяет два атома водорода с разрывом кольца и образованием пропана. Циклобутан также способен к такому гидрированию, но при 180 °С. Циклопентановые производные гидрируются в еще более жестких условиях при 300 °С и использовании активных катализаторов. Циклогексан не гидрируется. Циклопропан способен с разрывом кольца присоединять два атома брома, переходя в 1,3-дибромпропан.Ц. с большим числом атомов углерода взаимодействуют с галогенами без разрыва кольца, т. е. способны лишь к замещению атомов водорода галогенами, протекающему так же, как и у алканов с незамкнутой цепью. Концентрационные пределы воспламенения в смеси с воздухом 1,3—8,5 % (по объему). [c.76]

    По химическим свойствам циклопарафины близки парафинам. Это довольно стойкие в химическом отношении вещества, вступающие с галогенами в реакции замещения. Исключение составляют первые два представителя — циклопропан и циклобутан. Эти вещества, особенно циклопропан, ведут себя подобно ненасыщенным соединениям жирного ряда — они способны присоединять галогены с разрывом кольца и образованием дигалогенопроизводных жирного ряда  [c.104]

    Выше уже говорилось о том, как влияет напряжение в циклоалканах с небольшими кольцами на теплоты сгорания. Вполне вероятно, что другие химические свойства также будут изменяться под влиянием углового напряжения. И действительно, циклопропан и циклобутан значительно более реакционноспособны, чем углеводороды с открытой цепью. Так, они вступают в некоторые реакции, характерные для соединений с углерод-углерод-ной двойной связью, причем их реакционная способность зависит от степени углового напряжения и чувствительности атакующего агента к прочности связи С — С. Результатом таких реакций всегда оказывается раскрытие цикла путем разрыва связи С — Си образования соединения с открытой цепью, в котором углы между связями имеют нормальное значение. [c.111]


    Весьма подробно изучен гидрогенолиз и О—Н-обмен монометил- и стереоизомерных 1,2-диметилциклобутанов [89, 121, 122] в присутствии металлов на носителях и напыленных пленок Р1, Р(1, N1 и КЬ. Установлено, что порядок реакции по водороду отрицательный, как и при гидрогенолизе этана и пропана. Селективность гидрогенолиза по различным связям четырехчленного цикла зависит от природы и состава катализатора и условий проведения реакции. Авторы этих работ считают, что гидрогенолиз циклобутанов (подобно циклопентанам) происходит в соответствии с тремя независимыми механизмами. Доля участия этих механизмов в каждом конкретном случае зависит от катализатора и температуры. Первый из рассматриваемых механизмов — селективный гидрогенолиз дивторичных связей цикла — связывают с образованием а,а,р,р-тетраадсорбированных промежуточных соединений, плоскость четырехчленного цикла в которых перпендикулярна поверхности катализатора. Отмечалось, что селективность гидрогенолиза уменьшается в следующем ряду металлов КЬ > Р1 > Рд (количества 2,3-диметилбутана, полученного из транс-1,2-ди-метилциклобутана, составляют соответственно 90, 68 и 53%). Второй механизм — неселективный гидрогенолиз — связывают с равновероятным разрывом связей [c.113]

    В значительной мере сходная ситуация имеет место для циклобутанов с той разницей, что образование 4-членного цикла требует существенно мень-щего искажения валентных углов. Однако реагирующие группы С" и в 1,4-дизамещенном ациклическом предшественнике типа 279 (схема 2.107) находятся дальше друг от друга, и соответственно вероятность их внутримолекулярного сближения меньше, чем в рассмотренном выше случае образования циклопропанов из 1,3-дизамещенных производных. Поэтому синтез циклобутанов из 1,4-бифункциональных соединений, хотя и осуществим [28е], но оказывается обычно менее селективным, чем синтез циклопропанов (из-за возрастания роли межмолекулярных реакций). [c.214]

    Циклические кетоны. При облучении циклических кетонов ультрафиолетовым излучением образуются окись углерода и некоторые углеводороды [ИЗ—115]. Так, циклогексанон дает окись углерода и пентаметиленовый бирадикал, который в основном хотя и изомеризуется до циклопентана и пентена-1, однако распадается также с образованием небольших количеств этилена и пропилена 115]. Циклопентанон дает окись углерода, этилен и циклобутан. Выход циклобутана составляет 38%. При учете трудностей, возникающих при получении циклобутана другими методами, эта реакция может найти применение как метод синтеза циклобутана [116]. [c.256]

    К этому классу принадлежит ряд реакций образования циклобутанов, циклобутенов и четырехчленных гетероциклических соединений, вызываемых нагреванием или фотохимически. Классический пример — самопроизвольная димеризация цис-транс- [c.452]

    Итак, циклопарафины представляют собой стойкие вещества, которые с трудом вступают в химические реакции. С галоидами дают реакции замещения. Исключением являются циклопропан и циклобутан, которые подобно ненасыщенным соединениям этиленового ряда способны присоединять галоиды с разрывом кольца и образованием галоидопроизводных жирного ряда. Например  [c.48]

    Часть реакции может осуш ествляться за счет тех же самых переносов электрона, необходимых для превращения двух закомплексованных молекул этилена в циклобутан (рис. 16). Две другие тс-связи молекул ацетилена не могут быть использованы таким путем. Они образуют заполненные орбитали типа % и точно так же, как первые две тг-связи. В продукте они образуют сильно связывающую орбиталь а , умеренно связывающие орбитали типа и 2 и разрыхляющую МО типа а . Корреляционная диаграмма показана на рис. 24. Реакция все еще выглядит сильно запрещенной за счет начинающегося образования возбужденного состояния. Непоказанные -орбитали относятся к типам а жа ш помочь делу не могут. [c.473]

    Реакционная способность циклогексенона по отношению к алкенам хорошо коррелирует, по-видимому, с потенциалами ионизации последних. Это указывает на значительное влияние полярных эффектов и способности к комплексообразованию при образовании первой связи [43] вторая связь возникает только в результате замыкания после поворота фрагментов вокруг первой связи. Так, например, цис- и транс-дихлорэтилены, присоединяясь к циклогексенону в таких условиях, когда не происходит их изомеризация, дают смесь циклобутанов одного и того же состава [44]. Однако следует иметь в виду, что в случае малеинового ангидрида и его производных появление полосы переноса заряда не связано с реакционной способностью в реакциях присоединения [21]. [c.245]

    СХЕМА 6.7. образование ЦИКЛОБУТАНОВ ПРИ РЕАКЦИЯХ ТЕРЛ1ИЧЕСК0Г0 ПРИСОЕДИНЕНИЯ [c.196]

    Сдваивание производных олефинов в результате фотохимических реакций во многих случаях приводит к димерным циклобутанам этот процесс не имеет отношения к образованию олефинов. Однако в тех случаях, когда получаются олефины, течение реакции отли- чается от термической димеризации или от реакции Дильса — Альдера. При облучении бутадиенов в концентрированном растворе в присутствии сенсибилизатора (в противоположность разбавленному раствору в отсутствие сенсибилизатора) образуются димерные олефины [57] [c.149]

    Образование радикалов в опытах с метиленом и пропаном в газовой фазе можно было бы также объя спить аналогичным предположением об участии горячей молекулы. Такая возможность была подробнее изучена Фреем [59], который использовал в качестве субстрата циклобутан. Образование в этом случае этилена и пропилена было приписано разложению возбужденного метилциклобутана [реакция (7)]  [c.288]


    Сравнение реакций алкилзамещенных циклопропанов и циклобутанов с реакциями соответствующих винил-замещенных соединений показывает, что в последнем случае энергия активации меньше на 13 ккал1моль, а предэкспонент ниже примерно в 10 раз. Именно такого снижения энергии активации можно было бы ожидать в случае, когда скорость процесса контролируется реакцией образования аллильного бирадикала (III.39), так как энергия стабилизации такого радикала составляет [c.132]

    Термическое расщепление циклобутанов [727] с образованием двух молекул олефина циклореверсия [728]—реакция, обратная [2 + 2]-циклопрпсоединению) происходит ио биради-кальному механизму, а [о2б+о2а]-путь не обнаружен [729] (подстрочные индексы а означают, что в эту реакцию вовлечены а-связи). [c.259]

    Циклобутан ы. Циклобутаны также обладают высокой реакционной способностью, но в меньшей степени, чем циклопропаны. При обработке циклобутанов в условиях изомеризации происходит весьма интенсивная полимеризация, а в некоторых случаях протекает только полимеризация [89]. Так, метилциклобутан вступает только в реакцию полимеризации этилциклобутан частично изомеризуется, но главным образом нолимери-зуется изопропилциклобутан в основном изомеризуется и в весьма небольшой степени полимеризуется. Различие в склонности алкилциклобутанов вступать в реакцию изомеризации, вероятно, связано со снижением легкости образования ионов, необходимых для расширения кольца (увеличения числа углеродных атомов в кольце)  [c.95]

    Как было упомянуто выгпе, открытие способности аллена претерпевать реакцию циклоприсоедипения с различными активированными алкенами имеет важное синтетическое значение для получения 1.3-днзамещенных циклобутанов [35,37]. Обычно этой реакции сопутствует образование производных октагидронафталина из Д имера аллена [35, 37, 80], Течение реакции в случае аллена и акрилонитрила является типичным. [c.30]

    Циклобутан и некоторые его производные также были получены таким путем, однако для циклов большего размера этот метод неудобен. Уайтсайдс разработал чрезвычайно полезный вариант внутримолекулярной реакции Вюрца [119]. Он состоит в превращении сг,ш-дигалогенида в димагнийорганическое соединение с последующей обработкой солью серебра (I). При этом образуется промежуточное алкилсеребряное производное, которое разлагается с разрывом связи углерод-серебро и одновременным образованием связи углерод-углерод. Реакция протекает в мягких условиях, выходы циклоалканов зависят от размеров цикла. Циклобутан и циклопентан получают с отличными выходами для циклогексана и циклогептана выходы удовлетворительны средние циклы не образуются совсем или образуются в следовых количествах, а [c.139]

    Реакция образования циклобутанов по схеме [2-f-2] можно разделить иа две группы 1) реакции, в которых в качестве другого компонента выступают фторолефины, кетены, изоцианаты или другие соединения с активированной двойной связью и 2) реакции, в которых вторым компонентом является фотовозбужденная система я-связей, например карбонил или сопряженный олефин и т. п. [82]. В первой группе реакций барьер орбитальной симметрии преодолевается, если применять постадийный механизм. В случае же ке-тенов присоединение может проходить антараповерхностно анти) ко второму компоненту, как разрешенный процесс [.n2s-f- 2a] [78]. Фотохимические реакции (вторая группа) могут проходить через возбужденные состояния, которые включают Aq электронов ( = 1) и поэтому разрешены. Примеры реакций обеих групп даны уравнениями (166) — (174). Присоединение к простым олефинам устойчивых кетенов проходит только при повышенных температурах (уравнение 167), однако более активные молекулы, содержащие электронооттягивающие группы, реагируют в более мягких условиях (уравнения 168—170). В качестве единственного примера приведена также реакция присоединения фотовозбужденного [c.219]

    Не вдаваясь в подробности, следует далее отметить, что согласно квантовомеханическим расчетам валентный угол у атома углерода не может быть меньн1е 90" . Поэтому для малых циклов был предложен ряд различных моделей образования в них связей [2.1.7]. Эти модели показывают, что степень перекрывания АО в циклопропане меньше, чем в нормальных связях С—С. Поэтому энергия молекулы выше, и кольцо легко раскрывается при различных реакциях. В циклобутане связи С—С также несколько искажены, и поэтому вследствие уменьшенного перекрывания также более реакционноспособны, хотя и не в такой степени, как связи циклопропана. [c.208]

    Химические свойства циклоалканов во многом совпадают со свойствами алканов. Так, для насыщенных циклических углеводородов характерны прежде всего реакции радикального замещения. Только циклопропан и циклобутан, а также би- и полициклические углеводороды, содержащие 3- или 4-члепные кольца, ведут себя особым образом. Из-за низкой энергии образования связей С—С в этих соединениях они вступают в реакции присоединения, сопровождающиеся раскрытием кольца. [c.214]

    В недавних сообщениях [1—4] была описана новая реакция, включающая присоединение фторолефинов одного к другому, как, например, димеризация тетрафторэтилена [1] или хлортрифторэтилена [2], и присоединение фторолефина к таким ненасыщенным соединениям, как хлортрифториэтилен [3], акрилонитрил [4] и метилметакрилат [4] с образованием производных циклобутана. Эта новая реакция теперь изучена весьма детально и распространяется на присоединение тетрафторэтилена к широкому ряду олефинов. Установлен общий характер метода получения производных циклобутана путем циклоалкилирования. Так, тетрафторэтилен с этиленом образует тетрафтор циклобутан [1—4]  [c.307]

    Разрыв С — С-связи с присоединением водорода (гидрогенолиз) в присутствии гидрирующего катализатора — явление, сравнительно редкое в органическом катализе. Такой разрыв наблюдается либо в случае пониженной прочности связи под влиянием накопления по соседству электроотрицательных групп, например, у соединений, имеющих склонность к образованию свободных радикалов триарилметильного типа, либо в полиметиленовых кольцах с малым числом атомов углерода (циклопропан, циклобутан и их производные), для которых принимается наличие значительного байеровского напряжения, связанного с искажением валентных углов, свойственных правильному тетраэдру. Обыкновенные нормальные С — С-связи, например С — С-связи парафиновых углеводородов, оказываются достаточно прочными и в условиях, обычно применяемых при каталитическом гидрировании органических соединений, не расщепляются с присоединением водорода. Сказанное справедливо в полной мере только для тех случаев, когда в качестве катализаторов применяются благородные металлы, в частности платина. Однако в тех случаях, когда катализатором является никель, возможен гидрогенолиз С —С-связей даже в таких простых молекулах, как этан и пропан. Такого рода реакции описаны в старых работах Сабатье , в более поздних работах Тейлора с сотрудниками и недавних исследованиях, Гензеля . В последних описываются деметилирование 2, 2, 3-триметилпен-тана и 2,2-диметилбутана в присутствии никелевого катализатора и водорода и превращение их соответственно в триптан и неопентан. [c.223]

    Реакция i Hj с циклопропаном и циклобутаном ведет к образованию возбужденных метильных производных, которые, если они не стабилизируются столкновением, претерпевают реакции разрыва кольца и расщепления [108, 109]. Реакция i Hj с циклическими кетонами (циклоалкано-нами) ведет [ПО] к расширению кольца с образованием ближайшего высшего гомолога  [c.248]

    В результате ультрафиолетового облучения раствора циклоыентен-З-ояа в цикло-пентене [184] был получен с 67% выходом смешанный циклобутан с пятичленными циклами в /геракс-положении. Образование 1,5-дикетонов при облучении ацетилацетона с циклопентеном, циклогексеном или 1-октеном протекает с раскрытием первично образующегося карбоциклического четырехчленного кольца и является Практически ценной реакцией [193]  [c.476]

    Фотоциклоприсоединение относится к реакциям второго типа и является универсальным методом получения различных карбо- и гетероциклов. Наиболее изученными из них и нашедшими широкое применение представляются реакции [2-Ь2]-циклоприсоединения реакции димеризации этиленов с образованием циклобутанов, взаимодействие карбонильных соединений с олефинами, представляющее собой один пз основных методов синтеза оксетанов (реакция Патерно—Бюхи), присоединение кислорода к непредельным соединениям, приводящее к диоксетанам  [c.198]


Смотреть страницы где упоминается термин Циклобутана образование в реакциях: [c.115]    [c.447]    [c.460]    [c.178]    [c.135]    [c.129]    [c.133]    [c.10]    [c.197]    [c.94]    [c.217]    [c.151]    [c.808]    [c.113]    [c.10]   
Молекулярная фотохимия (1967) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Циклобутан



© 2025 chem21.info Реклама на сайте