Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура хлорида калия

    Однако иногда рекомендуют высушивать этот осадок даже при 350° С [2579]. При высоких температурах хлорид калия улетучивается [346, 722, 2655]. Высушивание на бумажных фильтрах при температуре выше 130° С может вызвать частичное восстановление хлороплатината калия с образованием КС1 и Pi [369, 517, 1785]. Эти ошибки не имеют места при применении стеклянных фильтров. [c.36]

    Наиболее часто употребляются каломельные полуэлементы, в которых концентрация хлорида калия или отвечает насыщению, или равна соответственно 1,0 или 0,1 моль-л . Потенциалы каломельных электродов по водородной шкале вычисляют с помощью следующих уравнений, справедливых в интервале температур от О до 100° С  [c.163]


    Система двухвариантная — можно изменять температуру и концентрацию хлорида калия. Давление пара над раствором определяется этими двумя параметрами. [c.183]

    Второй этап — охлаждение упаренного раствора (точка А) до 0°С. Раствор А при температуре 94 С ненасыщен, при охлаждении состав его не изменяется до момента достижения кривой насыщения в точке В. При дальнейшем охлаждении хлорид калия кристаллизуется и состав раствора изменяется до точки С, которая соответствует раствору, насыщенному хлоридом калия (21% КС1) при 0°С. На изотерме i = 0° (прямая F) находится точка D (состав исходного раствора на втором этапе) и точки, представляющие два комплекса, которые образовались из этого исходного раствора, — твердый хлорид калия F и раствор С. [c.190]

    Последовательность выполнения работы. 1. Подготовить охлаждающую смесь смешением 400 г измельченного льда со 120 г охлажденного и измельченного хлорида калия. Перенести смесь в сосуд Дьюара. Температура криогидратной смеси = —11°. 2. Поместить в сосуд Дьюара контейнер. 3. Поместить калорифер в контейнер и выдержать его там не менее 30 мин. 4. Выполнить пп, 4—8 работы 10. 5. Включить секундомер и начать измерения температуры по термометру Бекмана через каждые 30 сек, когда установится скорость изменения температуры менее 0,04 град мин. 6. Вынуть контейнер с калорифером из сосуда Дьюара после 11-го отсчета температуры и быстро поместить калорифер в калориметрический сосуд. Перемешивать содержимое калориметрического сосуда калорифером. Калорифер переносить за термометр. 7. Записать температуру по термометру калорифера. 8. Продолжать непрерывно отсчеты температуры по термометру Бекмана. Должно наблюдаться быстрое понижение температуры после помещения калорифера в калориметрический сосуд. 9. Извлечь калорифер из калориметрического сосуда, когда температура калорифера достигнет - -10°. Температура по термометру Бекмана некоторое время будет продолжать понижаться, а затем начнется ее повышение. По установлении равномерной скорости изменения температуры продолжить отсчеты температуры по термометру Бекмана. Сделать одиннадцать отсчетов. [c.148]

    Растворимость хлорида калия в воде при 20°С равна 347 г л а при 100 С возрастает до 802 г -л Вычислите произведение растворимости, ПР, для КС1 при каждой из этих температур. При помощи графика Гиббса-Гельмгольца, подобного изображенному на рис. 17-3, вычислите теплоту растворения КС1. Является экзотермическим или эндотермическим процесс растворения КС1  [c.117]

    Сколько хлорида калия надо добавить к 1,7 кг хлорида серебра, чтобы понизить температуру начала плавления до 650 К  [c.245]


    Рис, 17.2. Растворимость (Ц хлорида калия (/ ) и хлорида натрия (2) при различной температуре [c.257]

    В качестве стандартного раствора для нахождения значения к обычно используют раствор хлорида калия в [2, табл. 62] приведены значения у растворов K l при различных температурах. [c.262]

    Вначале в ячейку загружают навеску смеси, содержащую 50 % (мол.) хлорида калия и 50 % (мол.) хлорида натрия. Печь включают на разогрев. После расплавления навески солей и достижения температуры 720 °С в расплав осторожно высыпают навеску обезвоженного хлорида магния с расчетом, чтобы массовая доля его в электролите составляла 15—20 %. Расплав пе- [c.146]

    Скорость растворения диска из прессованного хлорида калия зависит от скорости его вращения. При одной скорости вращения диска и концентрации КС1 в растворе 160 г/л толщина диффузионного слоя и скор сть растворения диска составляют соответственно 2,5-10 2см и 2,5 мг/мин, при другой скорости вращения и концентрации КС1 100 г/л — соответственно 1 10- см и 9 мг/мин. Рассчитайте растворимость КС1 в воде, приняв коэффициент диффузии, поверхность диска, объем раствора и температуру постоянными. [c.84]

    Взаимная растворимость жидкостей в значительной степени зависит от присутствия третьего компонента, который может оказывать существенное влияние на критическую температуру растворения. Например, тот же самый анилин может неограниченно смешиваться с водой при всех температурах, если в растворе присутствует достаточное количество Е11. Объясняется это тем, что Ы1 в одинаковой мере хорошо растворим как в анилине, так и в воде. Если же третий компонент хорошо растворим только в одной из жидкостей, взаимная растворимость обеих жидкостей в присутствии этого компонента уменьшается, а следовательно, увеличивается критическая температура растворения. В качестве примера можно указать систему фенол —вода. Критическая температура этой системы может увеличиться на 30° при добавлении к ней 3% хлорида калия. [c.90]

    В присутствии хлорида калия, содержащего одноименный с каломелью ион хлора, растворимость каломели снижается. Таким образом, прн данной концентрации КС1 и данной температуре концентрация ионов Hg+ постоянна, чем, собственно, и обеспечивается необходимая устойчивость потенциала каломельного электрода. [c.238]

    К такому же типу процессов относится обсуждавшееся в гл. 12, ч. 1, эндотермическое растворение многих солей в воде. Если поместить хлорид калия КС1 в воду при комнатной температуре и помешивать соль в воде, то можно почувствовать, что по мере ее растворения сосуд с раствором постепенно охлаждается. Следовательно, процесс, описываемый уравнением [c.174]

    Но в насыщенном растворе каломели в присутствии хлорида калия активность ионов ртути будет определяться активностью ионов хлора из КС1. Так как uHg a i- = ПР при данной температуре, то анд = = ПР/o i-- Подставляя значение активности ионов ртути в уравнение электродного потенциала, получаем [c.297]

    Смесь нагревают до кипения, помешивая стеклянной палочкой, при этом вся соль должна раствориться (температура кипения раствора КС1 превышает 100°С). Как только весь хлорид калия растворится, нагревание прекращают. Полученный раствор КС1 оставляют для охлаждения до комнатной температуры. [c.27]

    По данным о растворимости K I рассчитывают, сколько должно было выделиться K I из раствора при охлаждении его до комнатной температуры. Относительно этого количества рассчитывают выход (в процентах) очищенного хлорида калия. [c.28]

    Вычислить интегральную теплоту растворения хлорида калия в воде, если в результате растворения навески 9,3413 г в 445,38 г воды температура понизилась на 1,115°. Теплоемкость полученного раствора 4,068 Дж/(г-К), а теплоемкость калориметра 122,7 Дж/К. [c.53]

    Неприменимость закона действия масс к сильным электролитам. В соответствии с законом действия масс константа диссоциации 1—1 валентного электролита, определяемая уравнением (Х1У.13), для данной температуры должна быть постоянной. Проверку этой закономерности на сильном электролите можно произвести на основании опытных значений степени диссоциации а. В табл. 5 содержатся значения а и для раствора хлорида калия в воде при IS . [c.380]

    Электропроводность расплавленной ионной соли обычно на один-два порядка превышает электропроводность водного раствора того же электролита. Так, например, удельная электропроводность расплава КС1 при 800°С равна 24,2 См/м, тогда как удельная электропроводность водного раствора хлорида калия <3 См/м. Проводимость расплавов остается, однако, на 3—4 порядка ниже проводимости жидких металлов, например ртути. Для сравнения электропроводности различных расплавленных солей, как и водных растворов, используют эквивалентную электропроводность. Однако при рассмотрении расплавов возникает проблема, связанная с сильной зависимостью Л от температуры и с необходимостью выбора соответствующей температуры сравнения, тем более что температуры плавления разных веществ существенно отличны. Особенно резкое изменение электропроводности происходит вблизи температуры плавления, так как при плавлении разрушается (диссоциирует) ионная решетка. Обычно сравнивают величины Л при абсолютных температурах, превышающих на 10% абсолютную температуру плавления. При этом, по-видимому, наступает практически полная диссоциация кристаллической решетки. [c.90]


Рис. 31. Зависимость удельной электропроводности твердого хлорида калия от температуры Рис. 31. <a href="/info/869526">Зависимость удельной электропроводности</a> <a href="/info/149604">твердого хлорида</a> калия от температуры
    При калибровке ячейки определяют постоянную ячейки /С = = 1/5. Для этого измеряют сопротивление стандартного раствора хлорида калия, удельная электропроводность которого известна. Удельные электропроводности стандартных растворов хлорида калия при различных температурах приведены в табл. 2.1 [c.96]

    В мерной колбе на 50 мл приготовить 0,01 М водный раствор КС1. Для этого используют бидистиллят и дважды перекристаллизованный и прокаленный хлорид калия. Тщательно промывают ячейку для измерения электропроводности, ополоснув ее не менее трех раз бидистиллятом, а затем тремя порциями исследуемого раствора. Заполнить ячейку исследуемым раствором и погрузить в термостат. После достижения требуемой температуры (для установления температуры 25 °С выдержать ячейку в термостате 20—30 мин) подсоединить ячейку к мосту переменного тока и несколько раз замерить сопротивления ячейки на частоте 1 кГц. Результаты измерений занести в таблицу по образцу  [c.97]

    Фазовые равновесия определяются соотношением термодинамических параметров (концентрации, температура, давление напряженность магнитного поля, напряженность электриче ского поля) и описываются основным уравнением, предложен ным Р. Клаузиусом (а до него — Б. Клапейроном), и формулой выведенной в 1876 г. Дж. Гиббсом и получившей название прави ла фаз. Эта формула связывает число так называемых термодина мических степеней свободы (в дальнейшем будет применяться более короткий термин степень свободы ), число независимых компонентов и число фаз системы. Фазой называется однородная часть системы (или совокупность гомогенных частей системы любого макроскопического объема), обладающая одинаковыми интенсивными свойствами и отделенная от других частей системы поверхностью раздела. Например, система из насыщенного раствора хлорида калия и монокристалла хлорида калия состоит из двух фаз. Если вместо монокристалла в системе будет порошок кристалликов хлорида калия, то все эти кристаллики вместе составят одну фазу, так как они представляют собой совокупность частей системы, одинаковых по всем интенсивным свойствам. [c.107]

    Наиболее широкое применение получил насыщенный каломельный электрод он легко приготавливается, в нем автоматически поддерживается постоянная концентрация хлорида калия. Преимущество децинормального каломельного электрода — существенно меньшая зависимость потенциала от температуры. [c.327]

    Определение постоянной электролитической ячейки. В ка честве стандартного раствора для определения постоянной электролитической ячейки используют раствор хлорида калия разной концентрации, насыщенный раствор хлорида натрия или сульфата кальция, приготовленные на бидистилляте. Удельные электропроводности этих растворов при различных температурах определены с большой точностью и приведены в справочных таблицах. Постоянную ячейки типа Х38, предназначенную для определения малой удельной электропроводности растворов, рекомендуется устанавливать по Хст и Rx, -i 0,001 н. раствора КС1. Для ячеек других конструкций стандартный раствор указывается в соответствующей лабораторной работе. [c.102]

    В насыщенном растворе постоянство концентрации хлор-ионов поддерживается автоматически. Однако недостатком такого электрода является большой температурный коэффициент, вызванный изменением концентрации насыщенного раствора хлорида калия при изменении температуры. [c.90]

    Затем, не выливая содержимого калориметра, определите его тепловое значение (см. с. 118), т. е. вклад теплоемкостей частей калориметра в теплоемкость реагирующей системы. Это можно сделать, вливая в содержимое калориметра определенное количество воды известной температуры или внося навеску хлорида калия, энтальпия растворения которого известна (из справочника). Ниже рассмотрим определение теплового значения калориметра электрическим нагревом. [c.126]

    Определите кажущуюся степень диссоциации хлорида калия. Эксперимент проводится по той же самой методике и с тем же прибором. Отвесьте с точностью 0,01 г около 0,25 г хлорида калия. Определите положение нуля на шкале термометра (если это не было сделано) н определите температуру замерзания раствора. Рассчитайте степень диссоциации. [c.158]

    Получение хлора окислением H I. В старом методе Дикона катализатором служила двуххлористая медь, осажденная на носителе (глине) в количестве около 1%. Реакцию вели в аппарате с неподвижным слоем при 480 °С. В последнее время проявился некоторый интерес к процессу с кипящим слоем. На заводе I. G. Oppau недавно стали применять в качестве катализатора сплав хлоридов калия и окиси железа при температуре слоя 455 С. [c.325]

    Решение задачи начинаемо построения изотерм системы К+, Na" С1", Н2О при 25 и 100° С, которые совмещаем на одной диаграмме (рис. 55), где кривая 1—2—3 отображает составы насыщенных растворов при 100° С, а кривая 4—5—6 при 25° С. Точки 2 ъ 5 отображают растворы, насыщенные относительно КС1 и Na l нри соответствующих температурах. Нанесем на диаграмму точку R, отображающую сухой хлорид калия, содержащий 98% КС1 и 2% Na l. Он получается в результате сушки отфугованного хлорида калия с 5,5% Н2О. [c.462]

    Хлорид калия КС1 представляет собой твердое кристаллическое вещество с температурой плавления 768°С. Это безбалласт-ное удобрение содержит 63,1% калия в пересчете на К2О. Растворимость в воде составляет 0,219 мае. долей при 0 С, 0,265 мае. долей при 25°С и 0,359 мае. долей при 100°С. Кристаллический хлорид калия способен слеживаться. Для уменьшения слеживаемости его обрабатывают раствором солянокислых солей высокомолекулярных аминов. [c.254]

    Галургический способ выделения хлорида калия из сильвинита или метод избирательного растворения и раздельной кристаллизации основан на различии температурных коэффициентов растворимости хлоридов калия и натрия при их совместном присутствии, то есть в системе КС1—Na l—Н2О . В растворах, насыщенных обеими солями, при повышении температуры от 20—25°С до 90—100°С содержание хлорида калия возрастает примерно в два раза, а хлорида натрия несколько уменьшается (табл. 17.2). [c.256]

    Кажущиеся степени диссоциации водных 0,01 М растворов хлорида калия, нитрата меди, сульфата алюминия и трихлорида лантана одинаковы. Расположите растворы этих вещестн в порядке увеличения температуры кипения при атмосферном давлеипи. [c.35]

    Двойной хлорид калия — кадмия КС1- d l2 -Н2О — тонкие игольчатые с шелковистым блеском кристаллы двойной соли, кристаллизуются из водного раствора эквимолярных количеств, входящих в состав компонентов, ниже 36 °С. При более высоких температурах можно выкристаллизовывать безводную соль. [c.263]

    Галогенсеребряные электроды сравнения очень удобны при работе в ячейках без жидкостного соединения они ггрименимы как в водных, так и во многих неводных средах. Они представляют собой серебряную проволоку, покрытую галогенидом серебра, который может быть нанесен как путем термического осаждения, так и электрохимически. Преимущество хлорсеребряного электрода по сравнению с каломельным состоит в том, что он устойчив при повышенных температурах. Хлорид серебра растворяется в концентрированных растворах хлорида калия, поэтому при приготовлении хлорсеребряного электрода необходимо насыщать раствор хлорида калия хлоридом серебра. [c.23]

    Выполнение работы. 1. Собрать установку для измерения сопротивления объема жидкости (см. рис. 22). 2. Определить постоянную электролитической ячейки типа Х38 по 0,001 н. раствору хлорида калия при 25° С. 3. Получить бидистиллят. Тщательно промыть электроды и измерительный сосуд бидистиллятом. Влить в сосуд отмеренное количество бидистиллята или заполнить им сосуд до метки. Вставить ячейку в термостат, отрегулированный на заданную температуру. Через 15 -20 мин 3—4 раза измерить сопротивление воды при высоком (порядка 10 —10 Ом), введя его в магазин сопротивлений. Рассчитать Ях,п.,о по (VIII.47) и удельную электропроводность бидистиллята по (VIII.15). Результаты измерений и вычислений занести в таблицу по формуле  [c.104]


Смотреть страницы где упоминается термин Температура хлорида калия: [c.189]    [c.55]    [c.176]    [c.176]    [c.225]    [c.247]    [c.71]    [c.22]    [c.103]    [c.191]   
Технология минеральных удобрений и кислот Издание 2 (1979) -- [ c.282 ]




ПОИСК





Смотрите так же термины и статьи:

Калия хлорид

Калия хлорид температуры замерзания и кипения

Температура кипения хлоридов калия

Температура плавления хлоридов калия

Температура хлоридов калия и натрия



© 2025 chem21.info Реклама на сайте