Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура плавления хлоридов калия

    Важнейшим способом получения металлов ПА-подгруппы, имеющих малые алгебраические величины стандартных электродных потенциалов, является электролиз их расплавленных хлоридов (или других галогенидов) иногда для понижения температур плавления к ним добавляют хлориды щелочных металлов. Например, бериллий получают электролизом расплавленной смеси фторида бериллия и фторида натрия, кальций и стронций — электролизом смесей хлоридов и фторидов этих металлов. Магний помимо электролиза расплавленной смеси хлоридов магния и калия получают другими способами восстановлением доломита СаСОз-М СОз ферросилицием или кремнием, восстановлением оксида магния углем в электрических печах. Барий принято получать металлотермическим (алюминотермическим) способом. [c.294]


    Для снижения температуры плавления электролита и растворимости натрия в расплаве в электролит вводят хлорид кальция или хлорид калия и фторид натрия. [c.200]

    Свойства соединений сильно зависят от наличия в молекулах этих соединений связей того или иного типа. Так, для соединений с ионными связями (хлорид натрия, нитрат калия, сульфат аммония) характерны высокие температуры плавления и кипения, хорошая растворимость в воде и плохая — в неполярных растворителях их растворы и расплавы проводят электрический ток. Напротив, соединения с неполярными связями (например, углеводороды) характеризуются низкими температурами плавления и кипения, они растворяются в неполярных растворителях, а их растворы и расплавы не проводят электрического тока. [c.63]

    Сколько хлорида калия надо добавить к 1,7 кг хлорида серебра, чтобы понизить температуру начала плавления до 650 К  [c.245]

    Электропроводность расплавленной ионной соли обычно на один-два порядка превышает электропроводность водного раствора того же электролита. Так, например, удельная электропроводность расплава КС1 при 800°С равна 24,2 См/м, тогда как удельная электропроводность водного раствора хлорида калия <3 См/м. Проводимость расплавов остается, однако, на 3—4 порядка ниже проводимости жидких металлов, например ртути. Для сравнения электропроводности различных расплавленных солей, как и водных растворов, используют эквивалентную электропроводность. Однако при рассмотрении расплавов возникает проблема, связанная с сильной зависимостью Л от температуры и с необходимостью выбора соответствующей температуры сравнения, тем более что температуры плавления разных веществ существенно отличны. Особенно резкое изменение электропроводности происходит вблизи температуры плавления, так как при плавлении разрушается (диссоциирует) ионная решетка. Обычно сравнивают величины Л при абсолютных температурах, превышающих на 10% абсолютную температуру плавления. При этом, по-видимому, наступает практически полная диссоциация кристаллической решетки. [c.90]

    Обменная реакция натрия с расплавленным гидроксидом калия протекает при температурах 380—500 °С, а реакция с расплавом хлорида — при температурах выше температуры плавления хлорида калия, т. е. 850 °С и более. При этом щелочные металлы находятся в парообразной форме, что осложняет процесс. [c.225]


    Эта реакция является более сложной она протекает в две последовательные стадии. При температуре несколько выше его температуры плавления хлорат калия образует перхлорат и хлорид калия  [c.317]

    Хлорид серебра можно переработать иа серебро так называемым сухим способом. Для этого 1 мае. д. сухого хлорида смешивают с 1 мае. д. безводной соды и /2 мае. д. нитрата калия. Смесь перетирают в ступке, помещают в фарфоровый или шамотный тигель и сплавляют при температуре 980—1000 С, т. е. несколько выше температуры плавления серебра, плавящегося прн 960,8 °С  [c.139]

    Магний в промышленных условиях был получен впервые электролизом расплавленного хлорида магния, к которому для снижения температуры плавления электролита и улучшения его физико-химических свойств добавлялись хлориды калия и натрия. Этот способ до настоящего времени сохранил свое значение в производстве магния. [c.287]

    Для ионных веществ характерна высокая температура плавления. Плавление происходит при такой температуре, когда упорядоченная структура твердого вещества уступает место беспорядочному расположению образующих его частиц. Между частицами, из которых состоят ионные вещества, действуют настолько большие силы взаимодействия, что для их преодоления требуются высокие температуры. В качестве примера укажем, что хлорид натрия плавится при 800°С, а фторид калия — при 880°С. [c.129]

    Для выполнения работы по первому варианту готовят эквивалентную смесь хлоридов натрия и калия (температура плавления 662° С), содержащую соответственно 0,5 5,0 и 50% (мол.) хлористого свинца. [c.177]

    Расчет теплоты сублимации основан на том факте, что интенсивность пиков в спектре прямо пропорциональна давлению пара образца в ионном источнике. Образец помещают в емкость с отверстием очень небольшого диаметра (ячейка Кнудсена), соединяющим ее с ионным источником, поэтому вещество может попасть в источник только за счет диффузии чфез это отверстие. Если ячейка термостатирована и в ней имеется достаточное количество образца, так что часть его всегда находится в твердом виде, то теплоту сублимации образца можно определить, исследуя изменения интенсивности пика (которая связана с давлением пара) в зависимости от температуры образца. Небольшое количество образца, диффундирующее в ионный источник, не оказывает заметного влияния на равновесие. При таких исследованиях были получены интересные результаты относительно природы частиц, присутствующих в паре над некоторыми твердыми веществами, имеющими высокие температуры плавления. В паре над хлоридом лития были обнаружены мономеры, димеры и тримеры, а в паре над хлоридами натрия, калия и цезия — мономеры и димеры [20]. [c.327]

    Основным компонентом электролитов для получения магния является хлорид магния, имеющий температуру плавления 718 °С. Для снижения температуры плавления электролита в его состав вводят хлориды калия, натрия, кальция. В зависимости от состава различают калиевый, натриево-калиевый, натриево-кальциевый и натриевый электролиты, составы и свойства которых приведены в табл. 5.4. [c.236]

    По первому методу электролиз осуществляют в электролизерах с расплавленным электролитом, содержащим только хлорид кальция (температура плавления 774°С) или хлорид кальция с добавками хлоридов калия и натрия для повышения электропроводности расплава. Применяемый в электролизерах катод касания представляет собой стальную штангу, касающуюся поверхности электролита. Кальций выделяется на штанге и создает прослойку расплавленного металла между штангой и солевым расплавом. Штангу из расплава медленно вынимают, увлекая расплавленный кальций, который начинает охлаждаться и затвердевает. [c.241]

    Электролиз расплава хлорида калия ведут в такой же аппаратуре, которую используют для получения металлического натрия из расплава Na l. Чтобы понизить температуру плавления хлорида калия, к нему добавляют фторид натрия. [c.96]

    Получение. Через нагретую до температура 170— 200 С колодку с катализатором пропускают водород со скоростью до 50 л/ч. Для сохранение активности катализатора водород должен быть предварительно высушен безводным хлоридом кальция или плавленым едким кали. [c.96]

    Зависимость термоЭДС от разности температур рабочего и свободного спаев несколько отличается от линейной, поэтому предварительно необходимо построить градуировочную кривую — графическую зависимость термоЭДС от температуры. Для этой цели получают кривые плавления эталонных образцов веществ высокой чистоты с известными значениями температуры плавления — так называемых реперных веществ. В качестве реперных чаще всего используют металлы высокой чистоты (олово, свинец, цинк, алюминий), тщательно очищенные соли (хлорид натрия, сульфат натрия, дихромат калия и др.) и некоторые органические вещества, например, бифенил (температура плавления 70,0 °С) и бензойную кислоту (температура плавления 122,5 °С). [c.100]


    Самыми универсальным и простым по составу флюсом является водный раствор хлорида цинка (40 масс. %). Многочисленные вариации этого состава сводятся к частичной замене хлорида цинка хлоридами аммония, натрия, калия, меди или соляной кислотой (от долей процента до 80 % хлорида цинка) для снижения температуры плавления и повышения активности флюса. Безводные составы применяются в виде паст на основе вазелина, канифоли, парафина, глицерина и др. Основное назначение этих флюсов — пайка и лужение железа. Остатки флюсов после пайки должны тщательно удаляться в силу их высокой коррозионной активности. Для пайки нержавеющей стали применяется концентрированная ортофосфорная кислота, насыщенный раствор хлорида цинка и его смесь с соляной кислотой (25 масс. % кислоты). [c.794]

    В последнее время едкое кали в реакции обменного разложения заменяют хлоридом калия, но более высокая температура плавления хлоридов, чем гидроокисей, увеличивает трудности процесса. В связи с этим представляет интерес вакуумтермическое восстановление калия из его соединений, главным образом из хлорида калия, алюминием, кремнием, карбидом кальция и т. п. [c.321]

    Взаимодействие хлористого алюминия с хлоридами щелочных металлов и аммония изучалось многими исследователями. Со всеми хлоридами щелочных металлов и хлористым аммонием хлористый алюминий образует соединения состава MeAl U, которые имеют сравнительно невысокие температуры плавления (натрий, калий и аммоний) и перегоняются без разложения. [c.153]

    Хлорид калия КС1 представляет собой твердое кристаллическое вещество с температурой плавления 768°С. Это безбалласт-ное удобрение содержит 63,1% калия в пересчете на К2О. Растворимость в воде составляет 0,219 мае. долей при 0 С, 0,265 мае. долей при 25°С и 0,359 мае. долей при 100°С. Кристаллический хлорид калия способен слеживаться. Для уменьшения слеживаемости его обрабатывают раствором солянокислых солей высокомолекулярных аминов. [c.254]

    К материалам, не подверженным химическим превращениям в пределах температур сушки, относятся многие минералы, руды и продукты неорганической технологии, например, такие, как плавиковый шпат, апатит, хромит, кальцит, хлориды калия и натрия и другие. Их можно подвергать, интенсивной сушке при достаточно высоких температурах. При-выборе способов и режимов высушивания в этнх случаях принимают во внимание дисперсность материала, его твердость, хрупкость, температуру плавления или размягчения и другие параметры, от которых, в частности, зависит и пыление. Естественно, что, как правило, стремятся обеспечить минимальный вынос пыли из сушила. Однако иногда, наоборот, создают условия для удаления с потоком теплоносителя наиболее мелкой фракции материала для улучшения его качества, что легк9 достигается, например, в аппаратах с кипящим слоем. [c.361]

    Кроме снижения температуры плавления, солевые добавки к Mg l2 существенно улучшают физико-химические свойства электролита. Добавка хлоридов калия и натрия повышает удельную электропроводность электролита, которая для указанных выше составов при 700 С составляет от 1,30 до 1,90 ом - см-К Для хлоридов калия, натрия и магния, а также для карналлита в табл. 42 приведены значения удельной электропроводности в зависимости от температуры. [c.291]

    Mg b, а электропроводность и напряжение разложения — близкие к таковым для КС1. Температура плавления смесей четырех хлоридов при замене в указанном выше составе некоторого количества КС1 на a lz около 500° С. Добавки хлоридов калия и натрия уменьшают также вязкость электролита и снижают гидролиз Mg la- [c.291]

    Электролитическое получение лития основано на электролизе расплавленной смеси равных по весу количеств хлоридов лития и калия при 450—500° С. Но так как в этом случае литий загрязнен калием (до 8%), то рекомендован и другой электролит — 13% 1лС1 и 87% ЫВг, имеющий температуру плавления около 520° С. [c.319]

    Электролит Даниэля имел температуру плавления около 600°С [Na l—62,5% (масс.), NaF —25% (масс.), КС1—12,5% (масс.)]. К достоинствам этого электролита следует отнести достаточно высокую электропроводность и невысокую гигроскопичность. Недостатком является сравнительно резкая зависимость температуры плавления электролита от состава и необходимость для поддержания температуры электролиза на уровне 650°С частого добавления в электролит хлорида натрия, невозможность применения высоких плотностей тока из-за возникновения анодных эффектов, чему способствует присутствие в расплаве фторида натрия, агрессивность к футеровочным материалам ванны, загрязненность получаемого натрия калием. [c.212]

    Получение. В колбу (см. ри,с. 2,а, стр. 13) наливают 30%-ный раствор сульфата, меди, а в капельную воронку насыщенный раствор цианида алия. Включив вакуум-насос, эвакуируют установку и к (раствору в колбе постепенно прибавляют раствор цианида калия. Сразу начинается выделение дициана. Скорость выделения дициана регулируют добавлением раствора цианида калия. Бсл.и реакция замедляется, реакционную колбу нагревают на водяной бане. Выделяющийся газ, содержащий до 20% двуокиси углерода проходит через конденсатор, охлаждаемый в бане со льдом и постушает в колонки, содержащие плавленый хлорид кальция и пятиокись фосфора. Высушенный газ поступает в конденсатор, погруженный- в сосуд Дьюара с охлаждающей омесью из твердой углекислоты и ацетона, имеющей температуру около —55 С, где он конденсируется в твердом состоянии. Несконденсированные газы (двуокись углерода, воздух) откачивают с помощью насоса. Для удаления несконденсярованных газов, -растворенных. в твердом дициане, конденсатор нагревают так, чтобы находящийся в. нем дициан расплавился и превратился в жидкость при этом растворенные газы выделяются. Снова переводят дициан Б твердое состояние, охлаждая конденсатор до —55 °С, и откачивают газ над твердым дицианом. Описанную операцию выделения и откачивания растворенных яесконденсирован-ных газов повторяют 2—3 раза. В случае необходимости проводят дополнительную очистку газа с помощью прибора для фракционированной дистилляции в вакууме (см. рис. 91, стр. 260). [c.259]

    Очищенный ацетилен (см. рис. 115) подают через реометр / и спиральный увлажнитель 2 в реактор 3, помещенный в термостат 4, где поддерживают температуру- 80 <1, Газ, выходящий из реактора, поступает в промывные склянкн 5 с водой для удаления ацеталь-дегида, затем дли высушивания — в колонку 6 (с безводным хлоридом кальция), колонку 7 (с плавленым едким кали) и затем в конденсатор 5, находящийся в дьюаровском сосуде 9 со смесью сухого льда и ацетона. Для фракционированной ректификации коц-деясата применяют эффективные колонки любой кон-(Ск. ........ [c.378]

    В колбу 4 помещают около 250 г очищенной серы, собирают установку, как показано на схеме (см. рис. 64), пропускают из баллона ток высушенного азота (высушивание плавленым хлоридом кальция, или едким кали и пятиокисью фосфора) для вытеснения воздуха из установки обычно пропускают 7—10-кратный объем азота ло отношению к объему установки. Затем п )опускают приблизительно такой же объем водорода для вытеснения азота и, не ярегсращая пропускание водорода, нагревают трубку 5 до 600 °С. Как только е трубке будет достигнута эта температура, нагревают колбу 4 с серой приблизительно до 250°С, для чего колбу помещают на песчаную баню. Одновременно конденсатор 16 охлаждают жидким воздухом. Скорость потока водорода должна составлять 8—9 л ч. Для того чтобы предотвратить оседание серы на холодной части отводной трубки колбы 4 и забивку трубки, последнюю изолируют асбестовым волокном. Температуру и-образных трубок 12, 13, 14. 15 поддерживают соответственно около —20 —40 —55 —55 °С для охлаждения трубок ишоль-зуют смесь твердой углекислоты и ацетона. [c.153]

    На практике для электролиза применяют электролит двух составов. При высожотемпературном электролизе (температура электролита 250 °С) работают с электролитом, содержащим КР и НР, а при втором — низкотемпературном электролизе ( 100°С) электролит содержит КР-2Р[Р. Попытка замены в электролите фторида калия фторидами других металлов не увенчалась успехом. Было установлено, что только добавление до 2% Ь1)Р положительно влияет на процесс, снижая температуру плавления смеси и давление насыщенных паров кислот, а также способствуя гашению анодного эффекта. Качество фтора и выход его по току зависят от наличия примесей в электролите (влаги, сульфатов, хлоридов и силикатов). [c.513]

    Для использования в качестве сырья хлорида натрия необходимо понизить температуру плавления электролита путем солевых добавок к Na l. При выборе солевых добавок следует исходить из того, что э. д. с. химических цепей Me Me l l2 в чистых хлоридах для катионов щелочных и щелочноземельных металлов при 700° С изменяется в следующем ряду s+>Rb+, Ba2+>Sr2+>K >Li+> > a2+>Na+>Mg2+. Последовательность разряда некоторых анионов из расплавленной эквимолекулярной смеси хлоридов натрия и калия при 700° С следующая 0H-- N03-->S2 ->S42--> G1-. Следовательно, в качестве солевых добавок могут быть соли, имеющие катионы, которые в первом ряду стоят левее Na+ и не содержат анионов, стоящих левее хлора. [c.224]

    Для очистки от примесей непредельных соединений и бензфуранов чаще всего рекомендуют использовать обработку окислителями. Так, рекомендуют обработку паров головной фракции серной кислотой при ректификации неочищенного фенола [136] нагревание фенолов с небольшим количеством сильной кислоты [137], нагревание при 50—125°С со смесью серной кислоты и сильного окислителя (бихроматом калия или перекисью водорода) [138, 139]. Очистку можно также проводить перекисью водорода в присутствии солей щелочного или щелочноземельного металла [140]. Возможна также очистка фенола нагреванием с воздухом или кислородом [141, 142], иногда в присутствии концентрированной серной кислоты [143]. Очистка возможна и при длительном выдерживании фенолов при температуре плавления [144], а также при длительном нагревании (30 ч) с небольшим количеством щелочи [145]. Запатентована сложная многоступенчатая схема очистки сначала нагреванием со щелочью, а потом обработкой хлоридом железа [146—148],. Схема предполагает двухкратную перегонку фенола. [c.202]

    Вызывало недоумение наличие довольно широкой полосы поглощения в ИК-спектре в области от 6,0 до 6,5 мкм (1667— 1538 см ). Вновь был составлен список кристаллических альдегидов и кетонов с температурами плавления от 58 до 63°С. Этот список возможных структур был идентичен тому, который приведен в примере 4. При обработке неизвестного соединения раствором перманганата калия и хромовым ангидридом оба этих реагента восстанавливались. На этом основании из списка были исключены неокисляющиеся соединения А, Б и Д. Затем провели пробу Цейзеля на присутствие метоксигруппы. Поскольку эта проба оказалась отрицательной, из списка возможных структур были исключены соединения Е и К- На том же основании следовало бы исключить соединение Д, отвергнутое ранее. Отсутствие в ПМР-спектре изучаемого вещества сигнала метоксильной группы подтверждает обоснованность исключения этих веществ. В качестве возможных структур остались соединения В, Г, Ж и 3. После этого был снова рассмотрен ИК-спектр. При этом его полосы поглощения сравнивали с таблицами с учетом соображений, приведенных в гл. 5 и 6. По-видимому, широкая полоса поглощения в области 6,2—6,5 мкм относится к валентным С=С-колебаниям енолизованного кетона. Полоса О—Н валентных колебаний енолов является широкой и в данном примере распространяется от 3,1 до 4,0 мкм (от 3200 до 2500 см с низким поглощением вследствие уширения). Исходя из этого, была проведена реакция исследуемого соединения с реактивом хлорид железа (III)—пиридин, при этом образовался раствор голубоватокрасного цвета. Полученный препарат 2,4-динитрофенилгидразона плавился в интервале температур от 150 до 151°С, что согласуется с литературным значением для этого производного бензоилаце-тона (соединение В). [c.536]

    Из лепидолитов цезий извлекается вместе с рубидием попутно, как побочный продукт производства лития. Лепидолиты предварительно сплавляют (или спекают) при температуре около 1000° С с гипсом или сульфатом калия и карбонатом бария. В этих условиях все ш,елочные металлы превраш,аются в легкорастворимые соединения — их можно выш,елачивать горячей водой. После выделения лития остается переработать полученные фильтраты, и здесь самая трудная операция — отделение цезия от рубидия и громадного избытка калия. В результате ее получают какую-либо соль цезия — хлорид, сульфат или карбонат. Но это еш,е только часть дела, так как цезиевую соль надо превратить в металлический цезий. Чтобы понять всю сложность последнего этапа, достаточно указать, что первооткрывателю цезия — крупнейшему немецкому химику Бунзену — так и не удалось получить элемент № 55 в свободном состоянии. Все способы, пригодные для восстановления других металлов, не давали желаемых результатов. Металлический цезий был впервые получен только через 20 лет, в 1882 г., шведским химиком Сеттербергом в процессе электролиза расплавленной смеси цианидов цезия и бария, взятых в отношении 4 1. Цианид бария добавляли для снижения температуры плавления. Однако барий загрязнял конечный продукт, а работать с цианидами было трудно ввиду их крайней токсичности, да и выход цезия был весьма мал. Более рациональный способ найден в 1890 г. известным русским химиком Н. Н. Бекетовым, предложившим восстанавливать гидроокись цезия металлическим магнием в токе водорода при повышенной температуре. Водород заполняет прибор и препятствует окислению цезия, который отгоняется в специальный приемник. Однако и в этом случае выход цезия не превышает 50% теоретического. [c.93]


Смотреть страницы где упоминается термин Температура плавления хлоридов калия: [c.223]    [c.452]    [c.38]    [c.198]    [c.406]    [c.91]    [c.155]    [c.209]    [c.415]    [c.286]    [c.627]    [c.88]   
Неорганические хлориды (1980) -- [ c.43 ]




ПОИСК





Смотрите так же термины и статьи:

Калия хлорид

Температура плавления

Температура хлорида калия



© 2024 chem21.info Реклама на сайте