Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термореактивные полимеры смолы

    Из уравнения (3.1) следует, что критическое значение а (переход системы в сетку) достигается при (1-4-р) > 7 > 1/(1 + р)-Это неравенство показывает допустимый избыток одной из функциональных групп. Если избыток больше критического, то геле-образование не наступает. Следует отметить, что приведенные выше уравнения выведены Флори при предположении об одинаковой реакционной способности функциональных групп всех реагентов системы. Поликондеисация полифункциональных мономеров с различной активностью функциональных групп рассмотрена в [24]. Именно при поликондепсации таких мономеров получаются термореактивные полимеры (смолы), широко применяемые в промышленности. [c.97]


    Термопластичные полимеры обладают свойством размягчаться при нагревании и становиться вязко-жидкими, а при охлаждении переходить в твердое состояние без изменения первоначальных свойств. Термореактивные полимеры (смолы) на холоду или при нагревании (сначала размягчаются, если они были твердыми) превращаются в твердые неплавкие и нерастворимые материалы. [c.11]

    Фурановая смола ФАМ и полиэфирные смолы ПН-1 и ПН-63 являются термореактивными полимерами и выполняют роль [c.197]

    При создании материалов, работающих в условиях высоких температур и больших динамических нагрузок, целесообразно использовать в качестве наполнителя углеродные волокна или их филаменты, обеспечивающие существенное упрочнение композиции и более равномерное распределение компонентов шихты [1—3]. В качестве связующих целесообразно использовать термореактивные полимеры фуранового ряда, имеющие высокую термическую и химическую стойкость и большой пиролитический остаток 1[4, 5]. При изготовлении композиций из термореактивных смол с порошкообразными наполнителями смолу обычно растворяют в органическом растворителе и в раствор вводят катализатор отверждения ионного типа. После удаления растворителя, например ацетона, образующуюся твердую массу дробят и формуют. В случае использования углеродных фила-ментов применение ацетонового раствора полимера нежелательно из-за неизбежного разрушения филаментов при дроблении твердой массы. [c.206]

    Феноло- и аминоформальдегидные смолы получают поликонденсацией формальдегида с фенолом или аминами (см. ХП1.1). Это термореактивные полимеры, у которых в результате образования поперечных связей образуется сетчатая пространственная структура, которую невозможно превратить в [c.368]

    Мочевино-формальдегидные смолы относятся к группе термореактивных полимеров, так как способны переходить из плавкого и растворимого состояния в неплавкий и нерастворимый пространственный полимер. Процесс переработки этих смол в аминопласты [c.478]

    Предварительные испытания включают определение вязкости, плотности, температуры каплепадения, горючести, растворимости, получение продуктов сухой перегонки и омыления. Особенно много информации для первичной идентификации полимера дает нагревание. Так, при нагревании пробирки с сухим образцом на масляной бане можно установить, к термопластичным или термореактивным полимерам относится испытуемый материал. Термореактивные смолы остаются твердыми, если они уже отверждены, или затвердевают после промежуточного размягчения. Термопласты размягчаются или плавятся, сохраняя растворимость после охлаждения. [c.220]


    При взаимодействии двухатомных насыщенных спиртов с двухосновными насыщенными кислотами или их эфирами с одноатомными спиртами образуются термопластичные полимеры линейной структуры, применяемые в качестве волокон, пленок, литьевых масс и лаков. При взаимодействии двухатомных или трех- и более атомных спиртов с ненасыщенными илп двухосновными кислотами образуются неплавкие и нерастворимые полимеры. Реакцию образования полимера останавливают на промежуточной стадии, а которой он еще не столь высокомолекулярен и поэтому еще не утратил способности растворяться и плавиться (термореактивная стадия). На термореактивной стадии смолу используют в качестве пленкообразующего компонента лаков или эмалей или связующего компонента пластмасс. На схеме 4 приведен перечень продуктов нефтехимического синтеза, используемых в производстве полиэфиров, а также основные назначения получаемых полиэфиров. [c.699]

    В зависимости от назначения пленки и покрытия ПВФ могут быть матовыми, блестящими, прозрачными, пигментированными. У пленок, предназначенных для дублирования, одну или обе поверхности подвергают активированию для улучшения восприимчивости к клеям. Это достигается поверхностной обработкой пленки химическими реагентами, высокочастотным искровым разрядом и другими приемами, с помощью которых в полимере возникают функциональные группы, способные взаимодействовать с клеем. Эффективны клеи на основе термопластичных (полиакрилаты), термореактивных (эпоксидные смолы) и эластомерных (полиэфиры, бутадиен-нитрильные или акрилатные каучуки) материалов. Перед использованием клеи рекомендуется подогреть. [c.78]

    КЛЕИ НА ОСНОВЕ ТЕРМОРЕАКТИВНЫХ ПОЛИМЕРОВ Клеи на основе фенолоформальдегидных смол [c.280]

    Известно, что наиболее просто самые достоверные кинетические параметры химических реакций получают из данных изотермического эксперимента. Однако проведение его в термическом анализе нередко оказывается невозможным по целому ряду причин. Главной из них является значительная глубина протекания реакции еще в процессе выхода на изотерму. При этом не рассматривается важная часть кривой, несущая информацию о начале процесса. Стремясь свести эту конверсию к минимуму, применяют высокие скорости нагрева (50—300 град/мин), но это не всегда помогает, так как реакции в термореактивных полимерах даже за доли минуты могут распространиться на значительную глубину. Кроме того, многие термореактивные смолы при таких высоких скоростях нагрева могут вспучиваться, что приводит к потере теплового контакта с ячейкой ДСК или к поломке прибора. Поэтому во многих случаях предпочтительнее проводить динамические ДТА — ДСК с постоянной скоростью нагрева. [c.6]

    Армированные стеклопластики. Пластмассы на основе термореактивных смол с 45—60% наполнителя из стеклянного волокна называются армированными стеклопластиками и отличаются механической прочностью, в некоторых случаях превышающей прочность стали. Получают их, пропитывая стеклянное волокно или ткань жидким полимером или его раствором с отвердителем. Пропитанную ткань или стекловолокно режут на куски и прессуют в специальных формах при нагревании до 80—100° С в течение 30—60 мин. Полимер при этом отверждается в монолитный материал. Применяют также вакуумное формование, сущность которого состоит в том, что размягченный лист материала, прикрепленный к форме, прижимается к ней вследствие выкачивания воздуха из пространства между формой и листом через множество отверстий в форме. В качестве термореактивных полимеров применяют фенолоформальдегидные смолы, полиэфиры сетчатого строения и другие полимеры. Из армированных стеклопластиков изготовляют детали самолетов, трубы для нефтепродуктов и химических веществ, кузова автомобилей, корпуса судов и пр. [c.311]

    Эпоксидные смолы — один из наиболее важных типов термореактивных полимеров, находящих широкое применение в электротехнике, химии и других отраслях промышленности. [c.328]

    Полиимиды —термореактивные полимеры с температурой размягчения порядка 500 °С, превышающие по термостойкости кремнийорганические смолы. [c.196]

    Полимеры, у которых макромолекулы имеют пространственную сшитую структуру, не могут так обратимо размягчаться и затвердевать, так как химические связи для разрыва требуют гораздо большей энергии. Если же нагреть полимер до такой температуры, когда имеющиеся химические связи начнут разрываться то сначала, полимер приобретет некоторую подвижность, но затем начнется либо полная его деструкция, либо он вторично заполимеризуется с образованием новых еще более прочных и жестких структур. Такие полимеры называются термореактивными. К ним относятся фенолоформальдегидная, мочеви-ноформальдегидная, полиэфирные, органосилоксановые и др. смолы. Изделия из термореактивных полимеров не размягчаются при нагревании. Неорганические полимеры при нагревании ведут себя иначе. Многие из них при нагревании распадаются на участки меньшей длины, происходит деполимеризация. [c.615]


    Термореактивные полимеры при достаточном повыитении темпе-ратуры первоначально тоже размягчаются, но одновременно в них начинают дополнительно образовываться прочные химические связи между цепями и через некоторое время, вследствие образования прочного пространственного каркаса, получается твердый материал, не обладающий пластичностью и не приобретающий ее при повторном нагревании. Такой продукт в отличие от термопластичных смол является неплавким и нерастворимым. [c.224]

    Многие полимерные материалы обладают ценными химическими и физическими свойствами и успешно применяются в различных областях энергетической техники как конструкционные и электротехнические материалы. Для этой цели используются термопластичные и термореактивные полимеры. Из термопластичных полимеров широко применяют полиметилметакрилат (органическое стекло), полистирол, полиэтилен, винипласт (непластифицированный поливинилхлорид), полиизобутилен, капрон, фторопласт-4 (политетрафторэтилен), из термореактивных — фенопласты, получаемые на основе фенолоформаль-дегидной смолы аминопласты, получаемые на основе мочевино-формальдегидной смолы полиэфирные, эпоксидные и кремнийорганические полимеры. [c.337]

    Резолы получают конденсацией фенола с формальдегидом в щелочной среде, как правило, ири избытке формальдегида. Так, в производстве технических резолов мольное соотношение формальдегида и фенола обычно составляет (1,0—3,0) 1. Резолы представляют собой термореактивные низкомолекулярные смолы, состоящие в основном из моно- и иолиядерных гидроксиметилфенолов (ГМФ), которые стабильны при комнатной температуре, но нод действием тепла и (или) кислот превращаются в сшитый, нерастворимый и неплавкий полимер (резит). Главным недостатком резолов является нх ограниченная стабильность при хранении. [c.40]

    Для развития ироизводства термореактивных полимеров большое значение имеет уровень развития деревообрабатывающей иромышленности (рис. 9.1), поскольку именно деревообрабатывающая промышленность является самым крупным потребителем карбамидных, меламииоформальдегидных н фенолоформальдегидных смол. На изготовление древесных материалов расходуется примерно 85% всех производимых карбамидоформальдегидных и более 25% фенолоформальдегидных смол. Основными потребителями композиционных древесных материалов являются строительство и мебельная промышленность. [c.118]

    Полимерные пленочные материалы, под ред. В. Е. Гуля, М., 1976. Л. П. Перепечкин. ПЛЕНКООБРАЗУЮЩИЕ ВЕЩЕСТВА (пленкообразую щие, пленкообразователи), основные компоненты всех лакокрасочных материалов, обусловливающие формирование прочной пленки при нанесении этих материалов на твердую пов-сть. Использ. преим. в виде р-ров в орг. р-рителях, реже — дисперсий в воде или орг. р-рителях и др. Наиб, распространенные П. в.— термореактивные синт. смолы (алкидные, феноло-формальд., эпоксидные, кремнийорг. и др.). Примен. также сравнительно низкомол. термоплас тичные полимеры (напр., эфиры целлюлозы, сополимеры виниловых мономеров, нек-рые полиакрилаты) и ограниченно — растит, масла (см. Олифы), производные канифоли, битумы. Пленкообразование термореактивных смол и высыхающих растит, масел сопровождается хим. р-циями (т. н. превращаемые, или необратимые, П. в.). Термопластичные П. в. образуют пленку в результате физ. процессов — улетучивания р-рителя или дисперсионной среды (непревращаемые, или обратимые, П. в.). Пленки превращаемых П. в. превосходят пленки непревращаемых по мех, прочности, термо-, атмосферо- и химстойкости важное достоинство непревращаемых П. в,- быстрое высыхание при обычных т-рах. Наяб. перспектявны П. в., на основе к-рых м. б. получены лаки, содержащие в качестве растворителя реакционноспособный мономер (например, полиэфирные лаки), а также водоразбавляемые и порошковые материалы. [c.448]

    Улучшение защитных свойств реагента при некотором ослаблении разжижающей способности, как указывалось, может быть достигнуто укрупнением его молекул. Это легко осуществимо методом конденсации лигносульфонатов с формальдегидом и фенолом в кис-.пой среде, разработанным И. Хачияма с сотрудниками и 3. Кином, например, для ионообменных смол. Конденсация при этом доводилась до стадии образования трехмерного термореактивного полимера. [c.143]

    С. п. содержат узлы сшивки (узлы ветвления)-химические, физические и топологические. В большинстве С. п. узлы образованы хим. связями, как, напр., в термореактивных полимерах (феиоло-, амино-, мочевгшо-формальдегидные и эпоксидные смолы, полиуретаны и др.), вулканизатах на основе натуральных и синтетич. каучуков, сшитом полистироле. С. п., содержащие узлы сшивки хим. природы, обычно нерастворимы ни в каких р-рителях (хотя могут набухать в последашх) и неплавки. Если же растворение протекает, то оно обычно сопровождается хим. деструкцией полимера. По этим же причинам С. п. не могут переходить без деструкции в вязкотекучее состояние при повышении т-ры. [c.335]

    СГЕаСЛОПЛАСТИКИ, полимерные материалы, армированные стеклянными волокнами. Связующее (матрица) в С.-гл. обр. термореактивные синтетич. смолы (фенольные, эпоксидные, полиэфирные, полинмидные, фурановые и др.) и термопласты (полиамиды, поликарбонаты, полипропилен, полистирол, полиэтилен, потаацетали и т.п.), а также эластомеры, неорг. полимеры. Наполнители-стеклянные мононити, комплексные нити, жгуты (ровинги), ткани, ленты, короткие волокна. [c.426]

    После удаления из мокрой древесины воды путем ее последовательного замещения растворителями для консервации могут быть использованы следующие термопластичные и термореактивные полимеры ПВБ, ПММА, ПБМА, ПВА, ПВХ, эпоксидные, феноло-, мочевю - и меламиноформальдегидные олигомеры, полиэфирные смолы. Из фенолоформальдегидных смол применяют как водорастворимые низкомолекулярные олигомеры — фонолоспирты, так и более высокомолекулярные растворимые в органических растворителях соединения. [c.121]

    Если изделия из фарфора были склеены клеями на основе термореактивных полимеров (эпоксидные и полиэфирные смолы, клей БФ), для дереставрации на клеевой шов накладьшают ткань, смоченную растворителем, в котором данный полимер набухает (или частично растворяется).  [c.216]

    Выбор светочувствительных компонентов для этого материала чрезвычайно широк. Практически к использованию предлагаются любые светочувствительные системы хинондиазиды солн диазония азиды композиции, генерирующие при фотолизе радикалы, напрнмер, содержащие полигалогениды СНСЦ СВг4, СВгзЗОгСбНв с дифениламином или нафтолом композиции хинонов с комплексами теллура или кобальта коллоиды, очувствленные бихро-матами поливинилциннаматы. В них дополнительно могут быть включены стабилизаторы, увеличивающие срок хранения, красители или промоторы сухого проявления. В качестве полимерных связующих для этих композиций рекомендуются феноло-формальдегидные смолы, ПВБ, поливинилформаль, ПС, полиакриловая кислота, ПММА, ПВА, сополимеры винилиденхлорида, акрилонитрила, винилацетата с малеиновым ангидридом, водорастворимые полимеры — желатина, ПВП, ПВС. Термореактивные полимеры, например эпоксидные смолы, могут быть введены в некотором количестве в термопластичное связующее, но при этом необходимо соблюдать осторожность при нагревании светочувствительного материала. Толщина светочувствительного слоя может быть от 0,5 до 500 мкм, предпочтительно 20—100 мкм. В качестве материала листа, принимающего переносимое изображение, могут быть использованы полиамиды, сополимеры винилиденхлорида, бумага, ламинированная полиэтиленом или полипропиленом. Этот лист [c.201]

    В литературе достаточно подробно освещены теория и технология переработки термопластичных и термореактивных полимеров. Можно сослаться на обстоятельный труд, изданный под редакцией Бернхардта , илн на монографию Мак-Келви , в которых подробно рассмотрены теоретические и технологические основы процессов переработки этих смол. К сожалению, по переработке полимеров через растворы имеется преимущественно технологическая литература, касающаяся отдельных видов продукции (например, химических волокон или полимерных пленок ) недостаточно освещены общие принципы и физико-химические закономерности, типичные для всех видов переработки через растворы. Более того, в науке о полимерах большое вниманне уделяется быстро развивающемуся производству новых пластмасс, перерабатываемых в термопластичном состоянии без прп- [c.12]

    Термореактивные полимеры, такие, как фенолформальдегидные, мочевиноформальдегидные и меламиноформальдегидные смолы, отнесены к деструктирующимся полимерам на основании ухзгдшения под действием излучения механических свойств [181]. Анилиноформальдегидная смола, содержащая ароматические группы, обладает более высокой радиационной устойчивостью, чем другие смолы [181, 353]. Эпоксидные покрытия H )n облучении на воздухе деструктируются [354], но в то же время отмечалось одновременное протекание и процессов сшивания [355]. Следует указать на отсутствие достаточных доказательств того, что термореактивные полимеры относятся к полимерам, при облучении которых преобладают процессы деструкции. Включение в трехмерную сетку термореактивных полимеров различных химических групп, особенно гибких алифатических цепочек, приводит к преобладанию процессов сшивания. Поэтому отнесение термореактивных смол к деструктирующимся полимерам требует специальных оговорок. [c.120]

    Если резол нагревать, то поликонденсация возобновляется и идет с образованием сшитых пространственных полимеров, которые утрачивают способность растворяться в растворителях и плавиться, т. е. происходит переход термопластичных смол в термореактивные. Термореактивяые смолы сохраняют термостойкость до 280 °С при более высокой температуре на-, чинается деструкция. Неплавкие и нерастворимые смолы но-, сят название резитов [c.349]

    Консистентные смазки, загущенные глиной с покрытием полимерами. Смазки на глинистых загустителях с покрытием пленками термореактивных полимеров [11, 13] отличаются высокой водоупорностью и вследствие стабильности полимерного покрытия могут применяться при весьма высоких температурах. При применении глин, частицы которых покрыты аминопластами (например, анилинформальдегидной смолой) или фенопластами (например, фенолформальдегидной смолой), в сочетании с соответствующими масляными основами достигаются превосходные эксплуатационные показатели смазок в подшипниках при температурах до 232 °С [13]. [c.243]

    Обычно в таких случаях содержание поперечных связей между линейными цепями близко к концентрации трифункцио-нальных групп (Г) в полимере. Типичным представителем силь-носшитого полимера являются фенолформальдегидные смолы (т. 1, стр. 171 и данная глава, стр. 271), в которых остаток формальдегида бифункционален, а остаток фенола би- или по-лифункционален. Строение сшитых (термореактивных) полимеров нельзя охарактеризовать только элементарным звеном, вследствие чего обычно употребляют структурные формулы, подобные приведенной выше. [c.233]

    Силоксановые термореактивные полимеры устойчивы к нагреванию [V17, V132] и окислению, подобно прочим силоксано-вым продуктам [Vil], которые были уже описаны ранее. Аналогична также-их гидрофобность. Однако серьезным недостатком являются их сравнительно плохие механические свойства как уже указывалось, эти свойства можно в значительной степени улучшить выбором подходящей комбинации алкил- и арилзамещенных силоксанов и их совмещением с другими типами полимеров. При применении смеси силиконовых лаков с чисто органическими смолами можно устранить также и другой недостаток—срав- [c.387]

    Пространственная структура присуща термореактивным пластмассам (смолам). Реакции образования поперечных связей протекаютч очень медленно при обычной температуре, быстрее при нагревании или в присутствии катализаторов. В этих условиях полимеры из относительно низкомодекулярных вязкотекучих соединений превращаются в высокомолекулярные и переходят в твердое неплавкое состояние, приобретая соответствующие свойства. Для лакокрасочных пленкообразующих подобные реакции структурирования (отверждения) протекают при их сушке на воздухе или при нагревании. [c.142]

    В консервной промышленности расширяется применение покрытий на основе термореактивных акриловых смол, отличающихся не только хорошим глянцем, белизной, чистотой цвета и прочностью, но и высокой цвето- и теплостойкостью, что дает возможность использовать их на наружных поверхностях банок под продукты, проходящие высокотемпературную обработку после упаковки. Кроме того, указанные материалы применяют в прозрачных моющихся покрытиях упаковочных средств для домашнего консервирования, в качестве шовных, а также покровных лаков для защиты литографской печати. Для внутренних покрытий консервной тары вместо чистых акриловых смол используют сополимеры акриловых мономеров с винилхлори-дом, винилиденхлоридом, стиролом, а также смеси акриловых полимеров с меламиноформальдегидными, фенольными, алкидными смолами, эфирами целлюлозы, эпоксиэфирами. [c.195]

    Для жидких полимеров, олигомеров и их р-ров (например, полиэфирных и эпоксидных смол) Ж. характеризуется временем гелеобразования (желатинизации). Этот параметр определяют 1) визуально — как время до того момента, когда полимер утрачивает текучесть 2) вискозимет-рически — как время достижения такой вязкости, при к-рой еще возможно формование полимера, или время до начала резкого нарастания вязкости 3) механич. методами, основанными на том, что движение рабочего тела при вращении, вибрации, возврат-нопоступательное движение и др. прекращается в момент образования геля или при достижении определенной степени структурирования 4) методами, основанными на регистрации повышения темп-ры полимера при отверждении. Период от момента введения инициатора до начала резкого повышения темп-ры испытуемого образца или до того момента, когда темп-ра образца превысит темп-ру бани на 2—6° С, принимают за время гелеобразования. Продолжительность пребывания в вязкотекучем состоянии феноло-формальдегидных и мочевино-формальдегидных смол и др. термореактивных полимеров, а также пресспорошков и других К0М1ШЗИЦИЙ на их основе определяют на [c.390]


Смотреть страницы где упоминается термин Термореактивные полимеры смолы: [c.52]    [c.749]    [c.167]    [c.217]    [c.265]    [c.87]    [c.448]    [c.393]   
Основы синтеза полимеров методом поликонденсации (1979) -- [ c.97 ]




ПОИСК





Смотрите так же термины и статьи:

СИНТЕТИЧЕСКИЕ КЛЕЯЩИЕ МАТЕРИАЛЫ КЛЕИ НА ОСНОВЕ ТЕРМОРЕАКТИВНЫХ ПОЛИМЕРОВ Клеи на основе фенолоформальдегидных смол Клеи на основе немодифицированных смол Смола ВИАМ-Ф9 ТУ

Сульфокислотные иониты на основе термореактивных f фенолформальдегидных полимеров (резольных смол)



© 2025 chem21.info Реклама на сайте