Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Размягчение полимера условие

    Понятие термостойкости полимерных материалов довольно неоднозначно. С одной стороны, оно характеризует температурный интервал плавления или температуру размягчения полимера с другой стороны, под термостойкостью понимают верхнюю предельную температуру, при которой в определенных условиях и при заданном вре- [c.390]

    Предполагается, что в случае скольжения сопротивление сдвигу в контактной зоне должно быть меньше, чем в более глубоких слоях, т. е. должно соблюдаться правило градиента сдвигового сопротивления . Поэтому для пар Т. необходимо подбирать такие полимеры, в к-рых в условиях Т. протекает термическая, механическая или термоокислительная деструкция, в результате чего на поверхности образуется слой с малым сдвиговым сопротивлением. В случае пар полимер — металл образующиеся при деструкции низкомолекулярные соединения могут привести к адсорбционному понижению прочности металлов кроме того, в условиях Т. они могут полимеризоваться, образуя, в частности, металлополимеры. Поверхностный слой с малым сдвиговым сопротивлением м. б. получен также в результате растворения металла полимером, размягчения полимера, намазывания его на металл и т. д. [c.325]


    Изложенный общий подход к образованию шейки как к релаксационному переходу с сильно выраженной зависимостью его интенсивности от напряжения явился основой количественного рассмотрения этого эффекта i как явления, описываемого некоторой системой уравнений. Общей основой описания служит анализ взаимодействия процессов превращения, ориентации и переноса со специфичной, особенно для кристаллических полимеров, неоднородностью деформирования. Таким образом, переход полимерного материала в шейку представляет собой релаксационное явление, зависящее от температуры и скорости воздействия и обусловленное размягчением полимера под действием приложенных напряжений и его упрочнением вследствие ориентации. Указанный переход происходит путем разрушения (частичного или полного) исходной структуры материала и связан с достижением эффективных условий. В крайних случаях этот процесс носит характер фазового перехода типа рекристаллизации или осуществляется путем структурной перестройки крупных элементов надмолекулярного порядка. Этот переход развивается неоднородно по объему материала и может осложняться побочными явлениями, например интенсивными тепловыделениями, что приводит к специфическому проявлению механизма в форме автоколебательного режима растяжения. [c.194]

    Переработка термопластичных, главным образом линейных, полимеров связана с нагреванием материала до необходимой степени размягчения (вплоть до перехода его в вязко-текучее состояние). В зависимости от технологии производства этот процесс проводится по-разному. Например, при формовании листового органического стекла (полиметилметакрилат) материал приходится нагревать до температуры, часто лишь в незначительной степени превышающей температуру размягчения полимера. В то же время при переработке методом литья под давлением или при шприцевании необходимо нагревать термопласты до температур, при которых вязкость материала в большинстве случаев должна быть около 10 — 10 пуаз. Условия переработки и характер изделий определяют необходимый температурный режим. Переработка термопластических полимеров должна производиться таким образом, чтобы изменение свойств полимера было по возможности минимальным. Деструкция материала резко ухудшает физико-механические показатели. В ряде случаев, апример при вальцевании, под влиянием механических воздействий может происходить разрыв полимерных молекул с образованием свободных макрорадикалов, которые способны затем вновь соединяться в макромолекулы. При этом возможно [c.25]


    В то же время такого изменения состава пленки не происходит в пленках, получаемых путем размягчения полимера или из его расплава, если полимер сохраняет свою химическую устойчивость в условиях его переработки и в процессе эксплуатации пленочных изделий. [c.14]

    Они отличаются также замечательно памятью формы, выражающейся в возврате формованного листа органического стекла в первоначальную форму при нагревании до температуры размягчения. В условиях нормальной температуры изделия из акриловых полимеров сохраняют форму, приданную им пр 1 изготовлении. В процессе формования органическое стекло при начальном разогреве дает усадку пр мерно на 2 о по длине и ширине, причем одновременно возрастает его толщина. При дальнейшем нагреве оно уже не изменяет своих размеров. [c.111]

    В первых работах авторы изучили кинетику развития деформации в переходной области при периодическом (синусоидальном) воздействии силы. Оказалось, что поведение полимерных материалов при таком воздействии резко отличается от поведения низкомолекулярных тел. Температура перехода полимерного тела из твердого (стеклообразного) состояния в высокоэластическое (т. е. температура размягчения) сильно зависит не только от природы полимера, но и от частоты воздействия силы. Если прикладывать нагрузку к полимерному материалу с большой скоростью, температура размягчения повышается. Таким образом, чем больше время воздействия силы, тем при более низкой температуре наступает размягчение полимера, и наоборот. Это значит, что при разной температуре можно получить одну и ту же деформацию полимерного образца, изменяя время действия постоянной силы. Время воздействия и температура компенсируют друг друга. Этот вывод совершенно необходимо учитывать в условиях практического использования полимерных материалов, если мы хотим избежать грубых ошибок в оценке их работоспособности. [c.19]

    Согласно соотношению (V.25) наиболее опасные случаи потери работоспособности возникают тогда, когда деформация превышает 8кр. В этот момент образуется шейка и деформация начинает быстро возрастать. Материал размягчается. Образование шейки и размягчение полимеров при механическом воздействии лучше всего изучено в условиях одноосного растяжения с некоторой скоростью. Получаемые при этом диаграммы растяжения для аморфных и кристаллических полимеров подробно описаны в гл. 5 и 11. [c.408]

    Вспенивание размягченного полимера или отверждаемого олигомера и структура образующего газонаполненного материала определяются рядом взаимосвязанных и часто трудно контролируемых физико-химических процессов, зависящих от скорости и условий газообразования, природы образующихся газообразных продуктов и физического состояния, химического строения и надмолекулярной организации полимерного (олигомерного) вещества. [c.136]

    Выбор клея зависит от химической природы полимера, условий работы клеевого шва и технологических возможностей в каждом конкретном случае. В условиях авторемонтных служб и особенно автолюбителям детали из термопластов рекомендуется восстанавливать и склеивать с помощью )астворителей или растворами термопласта, из которого сделана деталь. 5 результате обработки растворителем или смесью растворителей происходит размягчение поверхности пластика. Соединение размягченных материалов при небольшом давлении дает прочный клеевой шов. Применение растворов склеиваемых полимеров позволяет обеспечить необходимую вязкость клея и получить однородный клеевой шов. Клей наносят различными способами кистью, шпателем и т. д. После нанесения клея на поверхность детали для удаления растворителя дается открытая выдержка от 1 до 5 мин в зависимости от химической природы полимера и растворителя и концентрации полимера в растворе. [c.175]

    Разветвления возникают обычно в условиях полимеризации при повышенных температурах или при больших степенях превращения мономера (90— 00%). С ростом числа и размера боковых цепей регулярность строения полимера снижается, вследствие чего облегчается его растворение, но снижается температура начала размягчения полимера, т. е. уменьшается теплостойкость волокон. [c.35]

    При прессовании порошка в каждом из составляющих его зерен происходят вынужденно-эластические деформации, приводящие к уплотнению порошка. Эти деформации сохраняются и после снятия давления. При достаточном давлении прессования получаются довольно плотные таблетки, практически не изменяющиеся при хранении в условиях комнатной температуры. При нагревании по мере приближения к точке размягчения полимера вынужденные деформации релаксируют, и таблетки увеличиваются в размерах — вспучиваются. Чем сильнее спрессован порошок, тем в большей мере он расширится в результате релаксации. [c.109]

    Для выделения полимера из эмульсии в лабораторных условиях чаще всего применяют коагуляцию путем подкисления эмульсии какой-либо летучей кислотой, например уксусной. Осажденную бесформенную массу полимера разминают в воде для удаления кислоты, эмульгатора, катализатора и высушивают в вакуум-сушилке при температуре несколько более высокой, чем температура размягчения полимера. [c.807]


    К этому классу полимеров относятся прежде всего анилино-формальдегидные полимеры, которые представляют собой продукты конденсации анилина с формальдегидом. Эти полимеры были известны раньше только в виде плавких и растворимых олигомеров, но впоследствии были найдены условия, при которых конденсацией анилина с избытком формальдегида в присутствии большого количества кислых катализаторов удается получить термореактивные полимеры с высокой температурой размягчения. Полимеры этого типа не способны переходить в такую термостабильную форму, какая соответствует резиту, поэтому их нельзя перерабатывать в условиях, известных для феноло-формальдегидных полимеров. [c.95]

    Количество воды в суспензии почти не влияет на ход полимеризации, но все же отводить теплоту реакции легче при большем содержании воды. Однако, в отличие от лабораторных условий, на производстве по экономическим соображениям приходится применять системы с меньшим содержанием воды. Температура полимеризации должна быть не менее чем на 10° С ниже температуры размягчения полимера. Суспензионную полимеризацию можно рассматривать как полимеризацию в блоке, проводимую с мономером, разделенным на небольшие порции. Ее скорость значительно меньше скорости эмульсионной полимеризации [325]. [c.95]

    При определенных условиях молекулы формальдегида могут соединяться с молекулами фенола, образуя полимер. Этот полимер, как и многие другие органические полимеры, похож на стекло и довольно хрупок. Такие полимеры называют искусственными смолами. Обычно смолы при нагревании размягчаются. Можно к ним добавить и некоторые высококипящие вещества, чтобы они размягчились еще легче. Такой размягченной смоле можно придать любую нужную форму — подобные вещества называются пластическими массами или пластиками. А вещество, которое помогает превращать смолы в пластики, называют пластификатором. [c.120]

    Поли-е-капроамид [-ЫН(СН2)5 СО-] представляет твердое рогоподобное вещество белого цвета с температурой размягчения 210°С, температурой хрупкости -25°С и плотностью 1,13 т/м . Молекулярная масса капрона зависит от условий получения полимера и лежит в пределах 10 —3,5-10 . Степень кристалличности составляет около 0,6. [c.417]

    Форма диаграммы растяжения аморфных полимеров (при низкой температуре испытания) в основном определяется степенью ориентации звеньев макромолекул. Другие параметры строения (длина цепей сетки н стабильность ее узлов) существенной роли не играют. При заданном коэффициенте двойного лучепреломления диаграмма растяжения образца будет иметь определенную форму, не зависящую от условий его вытяжки. Указанное соответствие диаграмм растяжения и коэффициента двойного лучепреломления имеет место лишь при температурах испытания, лежащих на десятки градусов ниже температуры размягчения, а при температурах близких к ней оно нарушается. [c.194]

    Если скорость нагревания будет больше, чем скорость, с которой образец был охлажден (образцы 4 п 5), то область его размягчения будет располагаться выше области стеклования. При этом в области размягчения образец будет иметь более плотную структуру, чем та, которая при данной температуре являлась равновесной. Релаксация структуры будет приводить к менее плотной упаковке частиц и в области размягчения будет наблюдаться резкое увеличение объема или теплосодержания. Чем больше отличается фиксированная при охлаждении структура образца от равновесной, т. е. чем больше различие скоростей охлаждения и нагревания, тем больше аномальное увеличение объема. В случае процессов размягчения и стеклования полимеров характер дилатометрических кривых можно понять лишь считая систему неравновесной при условии, что она перешла к этому состоянию в результате плавного нагревания или охлаждения. И при положительных, и при отрицательных отклонениях от равновесного состояния время релаксации процессов размягчения и стеклования полимера зависит экспоненциально как от температуры, так и от их объема. [c.265]

    В загрузочной воронке мы начинаем медленное и в некоторой степени неустойчивое движение вниз, которое сопровождается многократно повторяющимися столкновениями с соседними гранулами и кратковременными зависаниями в своде. Это продолжается до тех пор, пока мы не достигнем зоны сужения — горловины питающего отверстия. Здесь винтовой гребень подхватывает гранулы и толкает их вперед. Он мгновенно догоняет нашу гранулу, и она начинает вращаться (при этом изменяется ее система координат). Теперь мы регистрируем свое движение относительно червяка, и поэтому кажется, что цилиндр вращается в противоположном направлении. Мы находимся в мелком канале, ограниченном гребнями червяка, его сердечником и поверхностью цилиндра, и начинаем медленное движение по каналу, сохраняя свое местоположение относительно ограничивающих канал стенок. По мере передвижения соседние гранулы нажимают на нашу гранулу со все возрастающим усилием, причем пространство между гранулами постепенно уменьшается. Большинство гранул испытывает такое же воздействие, за исключением тех, которые контактируют с цилиндром и червяком. Движущаяся поверхность цилиндра оказывает интенсивное тормозящее воздействие, в то время как трение о поверхность червяка приводит к возникновению силы трения, направленной вдоль винтового канала. Из разд. 8.13 известно, что это торможение о поверхность цилиндра является движущей силой, вызывающей перемещение частиц твердого полимера в канале червяка. Оба эти фрикционных процесса приводят к выделению тепла, возрастанию температуры полимера, и в особенности слоя, расположенного у поверхности цилиндра. В каком-то сечении температура слоя может превысить температуру плавления или размягчения полимера, и фрикционное торможение переходит в вязкое трение, т. е. твердый полимер перемещается по каналу червяка за счет напряжений сдвига, генерируемых в пленке расплава. Однако в более общем случае еще до начала сколько-нибудь значительного фрикционного разогрева экстремальные условия достигаются на тех участках, где цилиндр разогрет до температуры, превышающей температуру плавления, что ускоряет появление пленки расплава. Это означает окончание той части процесса транспортировки гранул, которая происходит в зоне питания, когда в экструдере присутствует только твердый нерасплавленный материал. К этому моменту наша гранула оказывается до некоторой степени деформированной соседними гранулами, с которыми она тесно контактирует, образуя вместе с ними достаточно прочный, хотя и деформируемый твердый блок, движущийся подобно пробке по каналу червяка. Тонкая пленка, отделяющая слой нерасплавлениого полимера от цилиндра, подвергается интенсивной деформации сдвига. Разогрев твердой пробки происходит как за счет тепла, генерируе- [c.431]

    Зависимости типа приведенных на рис. 9.15 можно объединить и построить, например график зависимости амплитуды деформации от температуры при разных частотах или от частоты при разных температурах. Такие графики, на которых отображается зависимость свойств и от температуры, и от частоты, приведены па рис. 9.16. Рассмотрим изменение амплитуды деформации от температуры при разных частотах. С повышением температуры образец при достижении Тс начинает размягчаться и амплитуда деформации при заданной частоте <0 возрастает. При дальнейшем росте температуры наблюдается переход в область развитого высокоэластического состояния и амплитуда деформации практически не меняется, как мы уже наблюдали при снятии термомеханической кривой в условиях статического нагружения (см. гл. 7). Для полимеров особенно характерна относительность понятия размягчение полимера. В самом деле, при частоте действия силы полимер размягчается при температуре Тс. Если увеличить частоту действия силы, то при температуре Тс полимер не успевает реагировать на эту возросшунэ частоту флуктуационная сетка не успевает перегруппироваться и деформация оказывается незначительной. Потребуется нагревание до более высокой температуры, чтобы обеспечить большую подвижность сегментов макромолекул. При этой более высокой температуре флуктуационная сетка сможет перестраиваться при большей частоте действия силы и развивать значительные деформации. Рост частоты действия силы приводит к росту температуры, при которой в полимере начинают развиваться большие деформации, т. е. к росту температуры стеклования. [c.135]

    В этом методе точка размягчения полимера соответствует температуре, при которой образец, находящийся на горизонтальном кольце, продавливается на 25 мм под давлением стального шарика, находящегося на образце [5] при определении образец нагревается на водяной бане. Этот метод применим для смол типа феиолформ-альдегидных и мочевпноформальдегидных. Условия этого испытания должны быть постоянными от определения К определению и должны тщательно контролироваться, чтобы получать приемлемо воспроизводимые результаты. [c.68]

    Во-первых, -чем жестче цепи полимера, тем верояпнее их разрыв вследствие трудности перемещения участков цепей, изменения их конформации и перераспределения внутренних напряжений. Если за критерий жесткости в первом приближении принять температуру размягчения полимеров, то положение первых трех членов ряда по убывающим значениям Мо будет оправдано. Поливи-нило вый спирт в воздушно-сухом состоянии в обычных условиях [c.100]

    Смешение порошкообразного полимера с порофором проводится в шаровых мельницах с керамической облицовкой и керамическими шарами. Применение керамики предотвращает попадание металлической пудры в термопластичный материал. Соотношение полимера и порофора в смеси определяется требуемым Количеством ячеек в единице объема пенопласта (его объемной массой) и количеством азота, образующегося при термическом разложении порофора. Из приготовленной смеси в герметических прессформах прессуют плиты или диски при температуре, достаточной для размягчения полимера и его сплавления в монолитную массу (для полистирола и поливинилхлорида 140—150 °С). В этих условиях порофор постепенно разлагается, а выделяющийся азот создает в прессформе давление, которое компенсируется давлением пресса (250—300 кгс см ). При этом азот равномерно распределяется в полимере. [c.549]

    Зависимость деструкции от условий эксперимента находится в соответствии с механо-химическим механизмом этого процесса [18]. Повышение температуры при постоянных скоростях сдвига не приводит к зависимости, установленной Аррениусом, а вызывает значительно меньшее изменение скорости процесса, выражающееся в уменьшении скорости деструкции с повышением температуры вследствие соответствующего понижения вязкости, вызывающего снижение затрат механической энергии на деформацию полимера. Большая скорость деструкции полимера более высокого молекулярного веса может быть обусловлена теми же причинами. Добавление пластификатора также влияет на деструкцию, поскольку при этом изменяется вязкость увеличение количества пластификатора или добавление вещества, вызывающего значительное размягчение полимера, уменьшает скорость деструкции. Повышение скорости сдвига вызывает увеличение скорости деструкции. [c.481]

    Условия добавления осадителя следует выбирать в зависимости от требуемого числа фракций. Необходимо поддерживать такую температуру фракционирования, чтобы более высокомолекулярные фракции выпадали еще в жидком, по крайней мере, в набухшем состоянии, так как только таким путем можно установить равновесие между растворенными и осажденными фракциями. Эта температура никак не связана с температурой размягчения полимера, так как осадок все же содержит растворитель и находится в набухшем состоянии (коацервация). Отстоявшийся раствор сливают и путем дальнейшего приливания к нему осадителя так же высаживают следующую фракцию соответственно более низкого молекулярного веса. Осадок с более высоким молекулярным весом выделяют высушиванием или, что более целесообразно, добавлением небольшого количества растворителя и последующим осаждением и высушиванием. Недостаток метода фракционного осаждения состоит в том, что в процессе фракционирования концентрация полимера в растворе настолько уменьшается, что далее уже невозможно количественное высаживание полимера необходимо отогнать часть растворителя (лучше в вакууме, чтобы избежать изменения и деструкции полимерных молекул). Эту операцию продолжают до тех пор, пока не выпадут все фракции после выпаривания оставшегося раствора выделяется самая низкомолекулярная фракция. Все фракции высушивают до постоянного веса и взвешивают. Для каждой фракции определяют молекулярный вес или степень полимеризации одним из нижеописанных методов. Затем составляют таблицу, в которую входят номер фракции, вес и процентное содержание фракции, как показано в табл. 34 на примере полиэфира себациновой кислоты и гександиола-1,6. [c.132]

    Сшивающиеся композиции на основе ПЭНП должны обладать высокими диэлектрическими показателями и хорошей эластичностью в условиях эксплуатации, а также малой деформируемостью под действием механических нагрузок при температурах выше температуры размягчения полимера. Использование для [c.76]

    Ход процесса растяжения и достигаемая при этом степень ориентации определяются в основном температурой, скоростью растяжения, содержанием пластификатора и приложенным напряжением. Равномерное растяжение всего образца возможно при температуре выше температуры размягчения полимера, которая близка к температуре стеклования и которая сильно зависит от содержания пластификатора. Влияние также могут оказывать следы растворителя, влага и остатки мономера. При холодной вытяжке часто наблюдается телескопический эффект . Он заключается в том, что пленка сужается в слабом месте и последующее растяжение происходит в очень ограниченной области, которая постепенно охватывает весь образец. Телескопического эффекта можно отчасти избежать, если проводить растяжение пленки достаточно медленно. В таких условиях успевают рассасаться напряжения и локальные перегревания, возникающие в ходе деформации. Маленькие куски полимера можно быстро растянуть руками. [c.65]

    При Фт>1 средняя температура среды />/ст. т. е. в процессе сушки велика вероятность, перегрева частиц выше ioт, что приводит к размягчению полимера— переходу его в высокозластичеокое состояние. В этих условиях [ПО] происходит необратимый процесс спекания полимерных частиц латекса в агломератах за счет поверхностнь1х и аутогезионных сил. В результате образуются плотные и прочные агломераты, поглощающие сравнительно небольшое количество пластификатора. Пластизоли получаются низковязкими, а так как при сдвиге агломераты разрушаются в меньшей степени, то по характеру течения пластизоли (Приближаются к ньютоновским жидкостям. Таким образом, только за счет температурных условий на стадии сушки представляется возможным варьировать важнейшие физико-химические свойства продукта. [c.174]

    При проведении операции вспенивания заготовку вторично нагревают при 85—110° до размягчения полимера. В зависимости от марки пенопласта нагрев заготовки осуществляют паром, водой или горячим воздухом. Под влиянием возрастания давления газа в заготовке увеличиваются уже имевшиеся ячейки и за счет снижения растворимости газа в полимере образуются новые. Вследствие этого заготовка в свободном состоянии вспенивается, т. е. увеличивает свои ра.змеры, в основном сохраняя форму, подобную первоначальной. Так как при прессовании практически невозможно создать идеальные условия для равномерного обогрева всех участков заготовки и герметичности пресс-форм, вспененные плиты пенопласта приобретают несколько изогнутую форму. Для устранения этого дефекта заготовки вспенивают в камерах, снабженных гидравлическим приспособлением для прямлеиия. [c.21]

    Температура размягчения полимеров составляет 30—45°С. Условия и результаты реакции получения полиоктена-1 приведены в таблице. [c.118]

    Целью модификации битумов полимерами является получение композиционного материала (компаунда) с преобладающими свойствами полимера, такими, как высокая прочность, широкий интервал рабочих температур - , высокая химическая стойкость, хорошая переносимость больших пластических деформаций, стойкость к действию климатических факторов и т.п.Температурный диапазон работоспособности дорожных битумов (алгебраическая сумма температуры размягчения по КиШ и температуры хрупкости по Фраасу) составляет обычно 50-65°, что обусловлено главным образом природой нефти, т.е. низкотемпературными свойствами ее низкомолекулярных компонентов и групповым химическим составом тяжелых остатков (сырья для производства битумов).Битумы малоэластичны, т.к. их пространственная структура, создаваемая за счет коагуляционных контактов между частицами дисперсной фазы (асфальтеновых ассоциатов), обусловливает минимальные по сравнению с недисперсными системами величины обратимых деформаций . В то же время условия эксплуатации дорожных, мостовых, аэродромных асфальтобетонных покрытий диктуют необходимость обеспечить трещиностойкость при температурах до -50°С и ниже, теплостойкость до 60-70°С и весьма существенно увеличить долю обратимых деформаций (эластичность). Для решения этих задач исследователи пошли по пути изменения структуры битума за счет создания в нем дополнительной эластичной структурной сетки полимера способного распределяться в битуме на молекулярном уровне. [c.51]

    Изменяя условия синтеза и исходные вещества, можно получап, полимеры с различными свойст15ами. Для всех исследованных полимеров этого типа характерна высокая температура размягчения (от 250 до 380 ) и повышенная огнестойкость.  [c.507]

    На основе фундаментальных исследований характеристик и свойств высокомолекулярных составлящих нефтяных остатков Институт химии нефти СО АН СССР совместно с БашНИИНП предложил использовать в качестве стабилизатора полимеров концентрат нефтяных асфальтенов и смол в оцраделенном их соотношении,характеризующийся температурой размягчения по КиШ 120-130°С. Бшш подобраны условия экстрактивного выделения соответствующих концентратов асфальтенов и смол из нефтяны остатков углеводородными растворителями (цроцесс Добен). Метод разделения тяжелых нефтяных остатков на асфальтено-смолистые и масляные компоненты экстракционной обработкой парафиновыми углеводородами основан на их различной растворимости в растворителе. [c.124]

    Ценную информацию о процессах, протекающих в полимере при вытяжке, можно получить с помощью метода изометрического нагрева (см. гл. I). По диаграммам изометрического нагрева (ДИН) можно установить условия вытяжки, так как между формой кривых и механическими свойствами полимера существует определенная связь. Метод изометрического нагрева является обратным по отнощению к методу термомеханических кривых. Если при снятии последних поддерживается постоянным напряжение и регистрируется развитие деформации при постоянном повышении температуры, то метод изометрического нагрева предусматривает регистрацию внутренних напряжений, возникающих при постепенном нагреве образца при постоянной деформации растяжения. При этом, если вначале образец не был нагружен, то при некоторой температуре в нем начинает развиваться растягивающее усилие. Оно достигает максимума и затем постепенно падает (рис. VI. 4). Форма диаграмм изометрического нагрева существенно зависит от режима вытяжки (кратности, скорости и температуры). С увеличением кратности вытяжки величина максимальных напряжений на ДИН возрастает (рис. VI.4,a). Для полимеров с достаточно высокой температурой размягчения (таких, как полиметилметакри-лат), кроме того, смещается в сторону низких температур начало роста напряжений (рис. VI. 4, г). Увеличение скорости вытяжки при постоянных кратности и температуре вытяжки приводит к увеличению максимального напряжения (Тмако и к уширению максимума (рис. VI. 4, i). С повышением температуры вытяжки при постоянных кратности и скорости вытяжки максимальное напряжение Стмакс уменьшается, а максимум уширяется. В отдельных случаях возникает даже плато (рис. VI-4,в). Вид этих диаграмм тесно связан с силовым режимом предварител1 ной вытяжки  [c.190]

    Формование изделий из термореактивных полимеров (часто с соответствующими нгполнителями и другими веществами) производят, переводя полимер в размягченное состояние при строго определенных условиях (температуре и давлении). При этом промежуток времени, необходимый для образования неплавкого продукта и закрепления этим заданной формы, зависит также от размеров и формы изделия. [c.224]

    Получение УВ включает процессы формования исходных волокон (см. Формование химических волокон), их подгото-виг. обрабопу/ и три стадии термич. обработки. В ходе подготовит, обработки меняют хим. структуру волокон или вводят в них в-ва, регулирующие процесс пиролиза и обеспечивающие макс. выход кокса. Первая стация термич. обработки - низкотемпературный пиролиз при т-ре до 400 С, когда удаляются низкомол. продукты деструкции, образуются сшитые и циклич. структуры. При этом создают такие условия, чтобы возрастающая т-ра размягчения (плавления) волокна оставалась выше т-ры обработки и чтобы сохранялись ориентированное фибриллярное строение и форма волокна до его полного перехода в неплавкое состояние. Затем следуют две стадии высокотемпературной обработки - карбонизация (при 800-1500 О и графитизация (при 1500-3000 °С). В их ходе завершается пиролиз, сопровождающийся удалением водорода и гетероатомов в виде летучих соед., и происходит образование углеродного полимера с заданной степенью упорядоченности. Варьируя упорядоченность структуры исходных волокон и условия высокотемпературной обработки, можно регулировать степень ориентации и кристалличность УВ, а также их физ.-мех. св-ва. [c.28]


Смотреть страницы где упоминается термин Размягчение полимера условие: [c.25]    [c.260]    [c.170]    [c.486]    [c.423]    [c.254]    [c.145]    [c.446]   
Физика полимеров (1990) -- [ c.192 ]




ПОИСК







© 2025 chem21.info Реклама на сайте