Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Смолы в стадии Л

    Первый этап приготовления инден-кумароновых смол - стадия подготовки сырья, заключается в ректификации "тяжелого бензола". При этом, в зависимости от предполагаемого качества смолы и используемого катализатора, могут быть отобраны либо узкая инден-кумароновая фракция (170—195 °С), содержащая не менее 75 % непредельных соединений, либо фракция 140-195 °С, содержащая 60-75 % непредельных соединений,, в том числе 30-40 % индена и кумарона и 10-15 % стирола и его гомологов. [c.317]


    Нерастворимая смола (стадия С) [c.471]

    При отверждении различают три стадии состояния смолы Стадия А (резо л)—начальный продукт. Резолы имеют линейное строение, растворимы в спирте и ацетоне и применяются в виде спиртовых растворов или водных эмульсий. Молекулярный вес смол в этой стадии равен 700—1000. [c.290]

    В настоящее время синтетические смолы заняли ведущее место в производстве современных лакокрасочных материалов. В данном разделе приведены основные виды синтетических смол, стадии их образования и структурные формулы. [c.515]

    Легкость фаолита и способность к формованию позволяет изготовлять из него самые разнообразные конструкции аппаратуры. Технологический процесс производства фаолита заключается в получении резольной смолы (стадия А), в сушке смолы, смешивании ее с наполнителем и в вальцовке сырой фаолитовой массы. В зависимости от дальнейшего назначения, массу раскатывают в листы, изготовляют из нее трубы или формуют различные детали. [c.396]

    Технологический процесс производства фаолита заключается в получении с применением аммиачного катализатора резольной смолы (стадия А), в сушке смолы, смешивании ее с наполнителем, в вальцовке сырой фаолитовой массы. В зависимости от дальнейшего [c.415]

    Останавливая процесс термолиза на любой стадии, то есть регулируя глубину превращения ТНО, можно получить продукты требуемой степени ароматизации или уплотнения, например, крекинг — остаток с определенным содержанием смол и асфальтенов и умеренным количеством карбенов, кокс с требуемой структурой и анизотропией. [c.41]

    С химической и генетической типизацией также связано подразделение нефтей на молодые и старые . Эти условные термины относят к нефтям с различной стадией генерации (формирования) нефти. К молодым нефтям относят катагенно непреобразованные, а к старым ката-генно преобразованные. От глубины преобразования высокомолекулярной части нефти зависит ряд особенностей свойств нефтяных остатков и составляющих их компонентов (структура высокомолекулярных асфальтенов, смол, термическая устойчивость и пр.). [c.13]

    Хлористая сера давно применяется при вулканизации каучука, однако химизм процесса в настоящее время находится в стадии исследования. Реакция хлористой серы с олефинами, кроме этилена, не исследована. Со смесью амиленов происходит, как отмечалось, бурная реакция, но никаких продуктов выделено не было [30]. Нефтяные крекинг-масла реагируют с образованием смол. [c.358]

    Однако вследствие полимерной природы углеводородов появляются некоторые необычные трудности в реакции сульфирования их. Сульфирование сополимера чисто гетерогенная реакция. Шарикам углеводорода дают предварительно набухнуть в органическом растворителе, чтобы обеспечить мягкое и равномерное проникновение сульфирующего агента в твердую фазу [114 в противном случае наблюдаются потемнение и крекинг с образованием мягкой и нестойкой смолы. Сульфирование можно довести до конца при применении избытка концентрированной серной кислоты при. 100 [114] в полученном продукте содержится по одной сульфогруппе на каждое бензольное кольцо. Удаление избытка сульфирующего агента после окончания реакции вызывает изменение объема и рассеивание теплоты разбавления. Так как эти факторы также приводят к разрушению шариков, то на этой стадии следует применять специальные методы для того, чтобы реакция протекала умеренно, нанример обработка концентрированным раствором поваренной соли. Другой исследователь [87] описывает сульфирование 95%-ной кислотой полистирола в виде тонкой пленки, что обеспечивает хорошую проницаемость и эффективный отвод тепла. Наиболее целесообразно применять ступенчатое разбавление отработанной кислоты. При жестком сульфировании хлор- [c.538]


    Если бензины термического крекинга подвергнуть воздействию солнечного света и воздуха, то очень скоро анализ бензина покажет наличие в нем перекисей. В период испарения крекинг-дистиллята можно легко обнаружить перекиси углеводородов и альдегиды. Последние, по всей вероятности, являются производными перекисей. В последующих стадиях испарения наблюдается быстрое развитие и увеличение кислотности [49]. Предполагают, что непредельные альдегиды и кислоты, которые получаются при разложении перекисей, являются промежуточной стадией смолообразования. У типичных см л с увеличением возраста увеличивается и растворимость в щелочах. Более того, удаление перекисей сильно уменьшает количество смолы, оставшейся при испарении дистиллята в свободной от кислорода атмосфере. [c.76]

    В результате изучения условий образования перекисных соединений, винилацетиленовых соединений и их смесей, образующихся в процессе полимеризации ацетилена, был подобран ряд эффективных ингибиторов (полифенолы, ароматические амины и др.), которые необходимо вводить на всех стадиях процесса [4, 5]. Разработаны также методы разложения перекисей, постепенно накапливающихся в смолах на поверхности реакторов и других аппаратов. [c.711]

    Большое техническое значение получили методы прессования или применения повыщенного давления, предложенные Бэкеландом для технического превращения чистых и наполненных термореактивных смол стадии А в смолы стадии С. [c.50]

    При работе в кислой среде, или изменяя pH по ходу реакции, можно получить более или менее гидрофобные продукты (приблкзптс.тьно соответствующие смоле стадии Б). Чтобы предупредить преждевременное превращение их в стадию С, добап.тяют так называемые буферные всщества, стабилн.. ирующие смолу. Полученные смолы обычно предназначены для прессовочных порошков и для достаточной скорости их отвердеваипя действие буферных веществ прекращают, вводя катализаторы отверждения. Для улучшения текучести смолы при прессовании целесообразно вводить специальные добавки. [c.275]

    Частично отвержденные смолы при набухании их в растворителях дают пастоподобные массы, которые легче смешать с твердым наполнителем. Смолы стадии В и С. можно смешивать с наполнителями в тщательно измельченном виде [c.506]

    При нагревании смола в стадии В размягчается, превращаясь в гибкую резинообразную массу при охлададении смола вновь становится твердой и хрупкой. Такая смола при дальнейшем нагревании переходит в совершенно неплавкое и нерастворимое 0С14 нйе, т. е. в смолу стадии,С (резит), которая может обладать ЙСШа разнообразными свойствами. [c.254]

    При термической обработке термореактивных фенолоформ-альдегидных смол с наполнителем (сырая фаолитовая масса) наблюдаются три стадии превращения смолы стадия А (резол), стадия В (ре итол), стадия С (резит) — конечное состояние, при котором смола теряет способность плавиться и растворяться. При нагревании резита выше 300 °С он обугливается. [c.28]

    Вначале исходная смола (стадия А), называемая р е-3 о л о м, представляет собой смесь сравнительно низкомолекулярных соединений, химическая ( юрмула которых дана вьш1е. Резолы плавятся при нагревании и растворяются в ацетоне, спирте и водных растворах щелочей. [c.136]

    В последнее время при синтезе алкидных смол стадию этерифика-щи и поликонденсации проводят с добавкой в реакционную смесь гсилола (или других растворителей), ускоряющего удаление реак-дшнной воды [1]. Это дает возможность осуществить синтез смолы 1ри более низкой температуре, резко снизить потери фталевого шгидрида и получить бо.тее светлые смолы. [c.439]

    Е. Акриловые смолы Стадия Е-1. Образование через циангидринацетон  [c.518]

    Принципиальная схема и материальный баланс второй ступени гидрогенизационной переработки смолы (стадия гидроароматизации) [c.178]

    Смола в стадии В является твердой при обычной температуре и становится резинообразной при нагревании. Твердость смолы в этой стадии значительно выше твердости смолы в стадии А. В некоторых растворителях (ацетоне, феноле, скипидаре и др.) эта смола набухает. Смола в стадии В практического применения не имеет. При нагревании смола в стадии В размягчается, при охлаждении смола вновь становится твердой и хрупкой. Такая смола при дальнейшем нагревании переходит в совершенно неплавкое и нерастворимое состояние, т. е. в смолу стадии С (резит), которая может обладать весьма разнообразными свойствами. [c.410]

    Реакции фенольных соединений с фориальдегидои известны давно и широко используются.Тец не иенее в обычных процессах изготовления сыол реакционную сыесь подверга-юх термической обработке относительно долго и с довольно большим количеством катализатора для того,чтобы добиться по-возможности полной реакции фенола с формальдегидом.Начальные продукты кондннсации таких реакций обычно относят к смолам. стадии А".Они представляют собой нестойкие соединения и пригодны только для использования без продолжительного хранения.Исходные компоненты таких продуктов продолжают реагиррвать при хранении, [c.52]

    Термолиз нефтяного сырья в жидкой фазе протекает через последовательные или параллельно — последовательные стадии образования и расходования промежуточных продуктов уплотнения по схеме легкие масла —полициклические ароматические углеводороды —>- смолы —> асфальтены —> карбены —> карбоиды —> кокс. При этом на каждой стадии образуются газы и менее низкомолекулярные жидкие продукты по сравнению с образовав — шимися промежуточными продукта ми уплотнения. Так, при термо — лизе смол образуются, кроме асфальтенов, масла и газы. Это обстоятельство позволяет процесс термолиза рассматривать как обратимый процесс, хотя вторичные продукты уплотнения по мо — лекулярной структуре не вполне идентичны исходным нативным компонентам сырья. [c.39]


    Анализ существующих тенденций в развитии стадии подготовки гудронов для последующего их каталитического гидрооблагораживания показывает, что эта проблема решается в основном двумя, принципиаль-ально различающимися методами 1) адсорбционно-каталитическим с использованием катализатора гидродеметаллизации и адсорбентов смол и асфальтенов 2) сольвентным, т. е. обработкой гудрона селективными растворителями с удалением концентрата смолисто-асфальтеновых веществ с сопутствующими им металлами. [c.13]

    Более отчетливо это можно проследить на рис. 1.18, где для того же остатка показано, как изменяется распределение никеля по группам компонентов в деасфальтизатах, полученных обработкой легким бензином и бутаном. Так, ванадий по мере удаления асфальтенов и части смол в основном сохранйется, незначительно изменяясь, в группе смол II, а никель в основном в смолах I, причем при каждой стадии обработки, т. е. бензином и затем бутаном, общий вид гистограмм распределения меняется только за счет удаления металлов из наиболее тяжелых компонентов - асфальтенов и смол II [34]. [c.44]

    Кроме указанного приема повьииения концентрации аренов полезно использоьание деструктивного разложения ассоциатов и надмолекулярных структур асфальтенов и смол до подачи на катализатор, т. е. на стадии предварительного нагрева. Предложено [46] подвергать остатки предварительному висбрекингу или гидровисбрекингу, т. е. легкой термодесгрукции в атмосфере водорода. Там же показано, что при незначительной глубине крекинга (3% по выходу фракции бензина, перегоня19шегося до 204 °С) константа скорости в реакциях удаления серы возрастает с 1,1 до 1,5, а при глубине крекинга до 12% константа скорости снижается до 1,0, что, видимо, связано с увеличением доли трудноудаляемой серы при более глубоком крекинге. [c.55]

    При каталитическом гидрооблагораживании нефтяных остатков наблюдаются два вида термодеструкции — термический крекинг и гидрокрекинг. Интенсивность протекания этих реакций с одной стороны обусловлена термической стабильностью сырья и с другой гидрокрекирующими функциями активных центров катализатора. Большинство опубликованных результатов по изучению реакций гидрокрекинга при обессеривании нефтяных остатков показьшают, что зти реакции идут лишь в начальной стадии процесса, т. е. на свежем катализаторе. Гидрокрекинг в основном обусловлен кислотными центрами [50], которые ввиду высокой концентрации азотсодержащих соединений, асфальтенов и смол быстро дезактивируются и степень Деструктивного разложения сырья на равновесном катализаторе в основном определяется реакциями термического крекинга, -протекающего в объеме. Длительность работы катализатора, в период которого заметны реад<ции гидрокрекинга обычно не превьпиает 100 ч. [c.58]

    Исходя из коллоидно-химических представлений о структуре нефтяных остатков (см.гл.1), механизм превращения СОЕ сырья в гипотетической форме может быть следующим (рис. 2.14). На стадии предварительного нагрева сырья с водородом до адсорбции на поверхности катализатора происходят первичные изменения структуры сырья, заключающиеся в том, что ядро ССЕ, состоящее из ассоциатов асфальтенов, диспергируется. Первичная сольватная оболочка ССЕ распределяется между диссоциированными частицами первичного ядра. Часть компонентов первичной сольватной оболочки растворяется в дисперсионной среде, находящейся в состоянии истинного молекулярного раствора. В предельном случае ядро ССЕ может быть представлено единичной частицей асфальтена. Каждая из этих частиц окружена сольватной оболочкой, толщина которой зависит от содержания смол, полиаренов, высоко- [c.68]

    Следует остановиться еще на одной, весьма важной особенности каталитического гидрооблагораживання остатков - это агрегативная устойчивость сырья. Как уже отмечалось в гл. 1, при переработке сырья, характеризующегося низкой агрегативной устойчивостью, возможно вьшадение дисперсной фазы в слое катализатора, что ведет к загрязнению его и ухудшению эксплуатационных характеристик катализатора. Загрязнения в основном состоят из карбенов и карбоидов, конечных продуктов термических превращений смол и асфальтенов. Интенсивность превращения асфальтенов в карбоиды определяется не только химическими стадиями, но и степенью диспергирования асфальтенов в разбавителе - дисперсионной среде [101]. С увеличением диспергирующих свойств дисперсионной среды, что наблюдается при увеличении М и содержания аренов, затрудняется ассоциация частиц асфальтенов [c.114]

    Нами был исследован и. с. у. различных компонентов нефти парафино-нафтеновой и нафтено-ароматической фракции, смол и асфальтенов. Было отмечено, что и. с. у. смол всегда тяжелее и. с. у. парафино-нафтеновой фракции, но по отношению к ароматической фракции смолы могут иметь как идентичный, так и более легкий или более тяжелый и. с. у. Нами был сделан вывод, что идентичный и. с. у. аренов и смолистых компонентов свидетельствует об их вторичном происхождении, связанном с окислительными процессами в нефти. Разный и. с. у. имеют смолы первичного происхождения. Смолы с легким и. с. у. могли иметь свои первичные источники образования, возможно, типа лигнина. Смолы с тяжелым и. с. у. представляют собой, по-видимому, остаточную часть сложной гибридной структуры, в результате деградации которой происходило образование нафтеновых циклов и ароматических колец. Внедрение кислорода в эту сложную структуру могло, по мнению А.Ф. Добрян-ского, происходить на ранней стадии нефтегазообразования, когда система не была еще полностью изолирована от влияния кислорода. [c.32]

    Так как реакции конденсации являются по существу реакциями дегидрирования, их можно в значительной степени исключить путем крекинга в условиях гидрирования и с использованием гидрирующих катализаторов. Или, если, как допускает Шервуд [42], гидрокрекинг нежелателен на первых стадиях, то его следует нрименить на конечных стадиях для лучшего использования остатков, которые перерабатываются до смолы или кокса (Скиннер и др. [43]). Такая конверсия остатков до светлого масла посредством каталитического гидрогенолиза должна быть более экономичной, чем, например, нрименение в качестве исходного продукта каменного угля. По исследованиям Н. А. Орлова и [c.109]

    Известно , что при поликонденсации фенолов с избыточным количеством ( юрмальдегида в щелочной среде получаются резоль-ные смолы. Образующиеся на первой стадии процесса фенолоспирты взаимодействуют между собой с образованием метилольных производных диоксидифенилметана  [c.31]

    Рустамов с сотр. исследовали кинетику конденсации фенола с ацетоном в присутствии серной, соляной и ортофосфорной кислот и сильнокислотных ионообменных смол с сульфогруппами (КУ-1 и КУ-2). Они показали, что реакция является необратимой. Энергия активации в случае использования серной кислоты и ионообменных смол одинакова (15,6 ккал1моль), что говорит об идентичности механизма реакции и одинаковой лимитирующей стадии при гомогенном и гетерогенном процессах. Высокая энергия активации указывает, чта катализ протекает в кинетической области. По активности катализаторы располаг аются в ряд  [c.87]

    Сложность способа состоит в том, что смесь побочных продуктов, выделенную из дифенилолпропана перекристаллизацией или экстракцией, необходимо предварительно разделить на фракции, так как присутствие больших количеств дифенилолпропана и смол мешает кристаллизации аддукта. Ректификацию проводят в глубоком вакууме (остаточное давление 0,3 мм рт. ст.). Первая фракция отгоняется при 100—150 °С и содержит фенол, п-изопропил- и п-изопропенилфенол и орто-орто-изомер дифенилолпропана. Ее можно возвратить на стадию синтеза. Вторая фракция отгоняется при 161 —165 С и состоит в основном из соединения Дианина и ортопара-изомера дифенилолпропана. Остаток после дистилляции — смесь дифенилолпропана и высококипящих побочных продуктов. [c.179]

    В практике применяются колонны противоточного типа. Исходное сырье вводится сверху колонны, а пропан — снизу. Температурные интервалы — от 37,8 до 54,5 С внизу колонны и от 65,6 до 82° С вверху ее. На один объем исходного сырья расходуется от 4 до 9 объемов пропана. Часто депарафинизация следует за деасфальтизацией в этом случае пропановый раствор охлаждают До заданной температуры. Иногда применяется двухстадпйная операция для отделения смол от асфальтов. После сепарации асфальтов на первой стадии масло, деасфальтизированное пропаном, в дальнейшем разбавляется пропаном (200% от начального остатка), и во второй стадии выделяется смоляная фракция [119]. При деасфальтизации остаточных дистиллятов для получения исходного сырья каталитического крекинга значительно снижается содержание солей ванадия, железа и никеля [120, 122]. [c.290]

    Каким образом происходит дальнейшая полимеризация, за пределами этой стадии образования полициклических ароматических соединений, пока неясно. Дальнейшее отщепление водорода в процессе конденсации ведет к образованию нефтяного кокса или тяжелых смол последние обычно находят в отложениях в печи крекинга. При этом, по-видпмому, происходит как полимеризация, так и диспропорционирование. Нанример, ненасыщенные замещенные ароматические соединения, такие как инден, быстро полимеризуются, а продукты полимеризации в свою очередь могут расщепляться в результате диспронорционирования  [c.302]

    Большое количество латексов для пенорезины расходуется для нанесения на нижнюю сторону ковров. При этом в латекс добавляют до 150—200 ч. (масс.) инертных наполнителей. Характерная особенность новых технологических процессов изготовления пенорезиновой изнанки ковров — отсутствие в них стадии желатинирования. Известны два основных промышленных способа такого производства. По одному из них (процесс, разработанный фирмой Доу ) вулканизацию вспененного латекса осуществляют с помощью реакционноспособных смол, таких, как меламинофор-мальдегидные, мочевиноформальдегидные, фенолоформальдегид-ные и др. Для осуществления этого способа разработаны также специальные латексы эластомеров и пластиков, содержащих карбоксильные группы. [c.610]


Смотреть страницы где упоминается термин Смолы в стадии Л: [c.353]    [c.471]    [c.193]    [c.116]    [c.10]    [c.55]    [c.59]    [c.63]    [c.64]    [c.264]    [c.300]    [c.603]   
Технология синтетических пластических масс (1954) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте