Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энтропия таблицы

    Экспериментальные данные по теплотам и энергиям гидратации целесообразно помещать в таблицы в виде относительных ионных теплот. Ниже приведена одна из таблиц такого рода, основанная на допущении равенства теплоты гидратации иона водорода нулю и включающая достаточно надежные термохимические данные. Значения ионных энтропий гидратации Д5,. (реальных) энергий гидратации ДСг(р) получены расчетным путем, они менее надежны, чем значения энтальпии ЛЯ,-, найденные из экспериментальных термохимических данных. [c.52]


Таблица 2.2. Относительные (—=0, —, =0, —АОн+ =0) теплоты, энтропии и энергии гидратации ионов Таблица 2.2. Относительные (—=0, —, =0, —АОн+ =0) теплоты, энтропии и <a href="/info/10861">энергии гидратации</a> ионов
Таблица 2.5. Энтропия гидратации отдельных ионов (Дж моль" К ) Таблица 2.5. Энтропия <a href="/info/1645670">гидратации отдельных ионов</a> (Дж моль" К )
    В табл. ХП.1 приводится список величин констант скоростей для бимолекулярных реакций, их экспериментальные энергии активации и предэкспоненциальные множители, полученные на основании вышеизложенных данных. Из таблицы видно, что выражения для констант скорости, полученные из термодинамического уравнения и теории соударений, не позволяют без специальных допущений отдельно определить величины, входящие в эти выражения. Раздельное определение всех величин — частот, энергий активации и энтропии активации — из экспериментальных данных возможно лишь в случае использования теории активированного комплекса, а также уравнения Аррениуса .  [c.247]

    Авторы рассмотрели и ряд других допущений. Составляющие колебательного движения (не показанные в таблице) сокращаются при 300° К, и ими можно пренебречь, если температуры не превышают 500° К при расчете величины A S ° для этих реакций. Таким образом, значения приведенные в последних двух строках табл. ХИ.З, можно приравнять стандартной энтропии активации, если не учитывать изменения симметрии. [c.256]

    Для сравнения в табл. XV.8 перечислены изменения энтропии для ряда ионных равновесий в воде при 25°. Несмотря на то, что в таблицу включены частицы с ковалентными связями, для которых возможность применения электростатической модели весьма сомнительна, общее изменение энтропии симбатно изменению, соответствующему уравнению (XV.12.2). Величины АР° и АЯ° дают гораздо худшее совпадение. [c.464]

    Пример 1У-12 (мольная теплоемкость, энтальпия, энтропия, энергия Гиббса). Для реальных газов и жидкостей в области высоких давлений при расчете указанных величин часто используются таблицы поправок или диаграммы, построенные на основе теории соответственных состояний. Несколько таких расчетов можно найти в разделе VI. [c.94]


    Результаты расчетов сведены в табл. 8. Сопоставление численных значений энтропии метанола и этанола, найденных нами при помощи приближенного уравнения (62) (см. третью графу табл. 8), с результатами прямых экспериментальных измерений и расчетов по спектроскопическим величинам (см. четвертую и пятую графу той же таблицы) указывает на достаточно удовлетворительное схождение сравниваемых величин. [c.225]

    До начала применения статистических методов точные термодинамические величины углеводородов были определены в основном при комнатной температуре. Теплота образования была получена использованием данных о теплоте сгорания и энтропиях, которые рассчитываются интегрированием экспериментальных теплоемкостей. Свободные энергии образования затем были рассчитаны по теплоте образования и изменению энтропии. Эти величины, отнесенные обычно к температуре 298° К, сведены в таблицы. [c.372]

    Величина энтропии сложным образом отражает всю совокупность свойств соединения в данном его агрегатном состоянии. Из таблицы, приведенной ниже, видно, что энтропия веществ зависит от молекулярного веса (и увеличивается с его ростом в ряду близких по свойствам веществ), от агрегатного состояния веществ (н возрастает при переходе от твердых тел к жидким и особенно к газообразным), а также от кристаллического строения (ср. энтропии графита и алмаза), изотопного состава (Н О h DjO) н структуры молекул (н-бутан и изобутан). [c.101]

    Следует отметить, что количество данных по значениям энтропий веществ, собранных в сводных таблицах, сравнительно мало. [c.101]

Таблица IV, 4 Энтропии испарения некоторых жидкостей в точках кипения Таблица IV, 4 <a href="/info/91347">Энтропии испарения</a> <a href="/info/527472">некоторых жидкостей</a> в точках кипения
    В таблицах (стр. 101 и 603) находим стандартные энтропии 55 ,  [c.315]

    Стандартные энергии Гиббса AG°, энтальпии образования АН° и энтропии 5° приводятся в специальных таблицах, в которых А0° и АН° элементарных веществ в стандартном состоянии условно принимаются равными нулю (см. табл. 3). [c.80]

    В табл. 17-4 приведены значения стандартной свободной энергии для реакции диссоциации SO3 при различных температурах, вычисленные по экспериментальным данным о константе диссоциации. По мере повышения температуры стандартное изменение свободной энергии для рассматриваемой реакции становится все более отрицательным, а константа равновесия возрастает, и для установления равновесия реакция должна все более смешаться вправо. Приведенные в этой таблице данные позволяют определить теплоту и энтропию реакции. Для того чтобы понять, как это делается, разделим левую и правую части уравнения (17-13) на Т, при этом получится соотношение AG°/T = АН°/Т — AS°, называемое уравнением Гиббса-Гельмгольца. Если воспользоваться этим уравнением и построить график зависимости величины AG°/T от 1/7 то тангенс угла наклона графика к оси абсцисс в каждой точке графика дает значение АН° при соответствуюшей температуре. [c.110]

    Приведенная здесь таблица содержит данные о стандартных энтальпиях (АЯ") и свободных энергиях (AG°) образования соединений из элементов в их стандартных состояниях, выраженные в килоджоулях на моль, а также термодинамические (вычисленные из третьего закона), или абсолютные, энтропии (S") соединений в джоулях на кельвин на моль все эти данные относятся к температуре 298 К. Фазовое состояние соединения указывается следующим образом (г.)-газ, (ж.)-жидкость, (тв.)-твердое вещество, (водн.) - водный раствор в некоторых случаях указывается также кристаллическая форма твердого вещества. Соединения расположены в таблице по номерам групп главного элемента, при установлении которого металлам отдается предпочтение перед неметаллами, а О и Н рассматриваются как наименее важные элементы. [c.448]

Таблица 2.3. Соотношения между информацией активных центров (Л ) в полной энтропией системы Таблица 2.3. <a href="/info/26387">Соотношения между</a> информацией <a href="/info/5969">активных центров</a> (Л ) в <a href="/info/805235">полной энтропией</a> системы
    Поскольку и в этом случае для каждой группы веществ нужно составить таблицы или графики для определения г, а также зависящих от г коэффициента летучести, теплоемкости, энтропии, энтальпии при повышенных давлениях, объем справочных данных, необходимых для проведения расчетов, велик. Поэтому, в основном, приводят таблицы или графики для наиболее распространенной группы веществ (2к=0,27) (см. рис. 1). Предложен ряд эмпирических приемов для перехода от найденных по этим таблицам или графикам г, у, СрР, 8р, ЛНр к аналогичным величинам для иных значений 2к (0,23 0,25 0,29) [3, 6]. [c.39]


    В термодинамических таблицах приводят значения энтропии для гипотетического состояния вещества в виде идеального газа. Рассмотрим, как определить поправку при переходе от энтропии реального газа 5 к энтропии идеального газа 5. Очевидно, что так как свойства реального и идеального газа совпадают нри р—Ю, то эта поправка [c.54]

    Полученное значение может быть приведено в стандартных таблицах. Понятно, что если по приведенной в таблице энтропии для состояния идеального газа нужно найти энтропию реального газа, нужно из полученного значения вычесть 5 —5" по рис. 6 (т. е. 0,8). Переход к жидкому состоянию уменьшает значение энтропии газа на изменения энтропии при нагреве пара и кипении. [c.57]

    Уже отмечалось, что в термодинамических таблицах приводят при 298 К функции жидких или твердых веществ (бензола, нафталина) в гипотетическом состоянии идеального газа. Энтропию этого гипотетического состояния можно рассчитать на основе следующего перехода  [c.57]

    Итак, учет свойств реального газа изменяет величину Д5р на—15,9 Дж/(мольХ ХК). Если из стандартных термодинамических таблиц найдена для состояния идеального газа при 0,1 МПа и 373 К энтропия СОа 222,2 Дж/(моль-К), то при тех же температуре и давлении в состоянии реального газа энтропия будет практически той же (5[—51 = 0), а при той же температуре и 100 МПа она уменьшится на 73,3 Дж/(моль-К), т. е. составит 148,9 Дж/(моль-К). [c.58]

    В термодинамических таблицах приводят термодинамические функции веществ, измеренные или рассчитанные при стандартном давлении (р°= 101325 Па) теплоемкость Ср°, энтропию 5°, энтальпию (теплоту) образования АН°ов, энтальпию (теплоту) сгорания АН°, энергию Гиббса образования АО°об, логарифм константы равновесия образования lg/ °poб. По этим величинам находят стандартную энергию Гиббса исследуемой реакции А0°, а по ней константу равновесия Кр° и равновесный состав  [c.64]

    Расчет величины Д5р выполняется по той же схеме, что и расчет АНр, с использованием таблиц или графиков, выражающих разность энтропий реального и идеального газа как функции приведенных параметров т и я (см. рис. 6). Величину АО -обычно находят по значениям АНр и А5р  [c.77]

    Нужно подчеркнуть, что для всех компонентов реагирующей смеси (газообразных, жидких, твердых) можно определить стандартные термодинамические функции и по ним — стандартные теплоту реакции АН°, изменение энтропии Д5° и изменение энергий Гиббса А0° для гетерогенной реакции. Как правило, необходимые величины имеются в стандартных термодинамических таблицах. Возникает, однако, задача использования величины Д0° для расчета равновесных составов. [c.87]

Таблица 67. Теплоты ДЯм и изменения энтропии Д5м при полимеризации с образованием твердого частично кристаллического полимера при 25 °С Таблица 67. Теплоты ДЯм и <a href="/info/12283">изменения энтропии</a> Д5м при полимеризации с <a href="/info/277188">образованием твердого</a> <a href="/info/117716">частично кристаллического</a> полимера при 25 °С
Таблица 70. Энтропия полимера в зависимости от его степени Таблица 70. <a href="/info/74061">Энтропия полимера</a> в зависимости от его степени
    Поправки при указанных выше переходах определены путем усреднения изменений для 5—15 одинаковых переходов, осуществляемых для алкенов с разной молекулярной массой. Пользуясь этими поправками и термодинамическими параметрами бутена-1 можно определить теплоемкость, энтропию, теплоту образования и изменение изобарно-изотермического потенциала при образовании для алкена с заданным строением в широком интервале температур (300—1000 К). Подчеркнем, что характеристики бутена-1 и поправки, приводимые ниже в таблицах, даны для газообразного состояния при 0,098 МПа. [c.387]

    В Пределах подгруппы элементов в периодической таблице энтропия простых веществ растет, однако не потому, что она является однозначной функцией массы. В последнем легко убедиться, рассмотрев ход изменения энтропии элементов третьего периода (рис. 2.6). Так, хотя в ряду Na — Аг атомная масса увеличивается, однако м8 претерпевает сложное изменение. Переход от мягкого натрия к твердому кремнию сопровождается уменьшением энтропии, затем опа несколько [c.180]

    Книга содержит сведения о термодинамических свойствах фильтрационного потока нефти, газа и нефтегазовых систем (бинарных смесей). На диаграммах и в таблицах приведены важнейшие термодинамические функции пластовой жидкости (теплоемкости, энтальпии и энтропии, изобарно-изотермического потенциЛга, константы равновесия, плотности и др.) в процессе фильтрации в диапазоне давлений от 30 до 300 кГ см и при температурах до 80° С.,  [c.2]

    Значения теплосодержаний берут или из таблиц, или же, чаще всего, из диаграмм, которые строятся на основании опытных данных или подсчетов и носят название энтропийных Т—S) или тепловых (/—Т) диаграмм. Такие диаграммы имеются для всех наиболее часто встречающихся газов (Н , N2, О2, воздуха, II4, СО2, С2Н2, NH3, SO2 и др.). Энтропийные (Т — S) диаграммы построены таким образом, что на одной их оси (обычно ординат) отложены значения температуры газа, а на другой оси (обычно абсцисс) —значения его энтропии 5. Иа самой же диаграмме нанесены линии давлений Р и их пересекают линии теплосодержаний /. На многих диаграммах, кроме того, нанесены также линии удельного объема, удельного веса и др. Для нахождения значении / (или i) ни шкалы S (т. е. вертикальных линий), ни линий удельного объема и т. д. не требуется. Здесь следует искать только две линии линию температуры и л и и и 10 давлен и я. Затем, найдя для заданных условий (Р и t) точку их пересечения, смотрят, какую величину имеет теплосодержание I (или /), определяемое по линии, проходящей через эту точку иересечепия линий Р и /. Эта величина / будет означать теплосодержание газа при данных условиях (Р и /). Кроме Т — S диаграмм, существуют /—7", а также / — Р-диаграммы, где на одной оси отложены теплосодержания (/), на другой- -температуры (Т) или давления (Р) есть диаграммы, построенные специально только для высоких или только для низких температур. Но при нахождении значений / (или i) всеми диаграм- [c.103]

    Таблицы содержат следующие данные для чистых веществ мольную теплоемкость (Ср), значения эмпирических коэффициентов уравнений (VI-14), энтальпию (ДЯща) и энергию Гиббса (ЛСзэв), которые рассчитываются как изменения значений этих функций при образовании 1 моль данного соединения в стандартных условиях из простых и устойчивых в этих условиях веществ, и, наконец, абсолютную энтропию в стандартных условиях 5° . Примеры таких данных для некоторых веществ приведены в табл. VI- [12]. [c.135]

Таблица 1.3. Значения энтальпии ДЯ°, Дж/моль, иэмеиения энтропии Л5°, Таблица 1.3. <a href="/info/34475">Значения энтальпии</a> ДЯ°, Дж/моль, иэмеиения энтропии Л5°,
    Вычислить AG° образования СН4, С2Н4 и NH3 исходя и значений АН° и изменения энтропии Д5° (см. табл. 3). Полученные величины сравнить с данными, приведенными в той же таблице (см. пример 2). [c.82]

    По величинам АР и АО определяют как термодинамическую вероятность процесса (процесс протекает слева направо при Т, и = сопз1, если Д/ <0, или при Т, р = сопз1, если Д(3< 0), так и константу равновесия (по уравнению изотермы) и далее равновесный состав. По приводимым в термодинамических таблицах данным можно рассчитать стандартные энтальпию АН° и энтропию А5° реакции. [c.63]

Таблица 33. Теплоты ДЯ° (в кДж1моль), изменения энтропии [в Дж (моль-К) константы равновесия Кр для реакций изомеризации нафтенов в газовой фазе Таблица 33. Теплоты ДЯ° (в кДж1моль), <a href="/info/12283">изменения энтропии</a> [в Дж (моль-К) <a href="/info/2838">константы равновесия</a> Кр для <a href="/info/20489">реакций изомеризации</a> нафтенов в газовой фазе
Таблица 37. Теплоты ДЯ° (в кДж1моль), изменения энтропии Д5° ароматических углеводородов Таблица 37. Теплоты ДЯ° (в кДж1моль), <a href="/info/12283">изменения энтропии</a> Д5° ароматических углеводородов
    Стандартные изменения энергии Гиббса. Значения AS, а поэтому и AG сильно зависят от концентрации реагирующих веществ, Ввиду этого для характеристики влияния температуры на данный процесс и ддя сравнения различных реакций необходимо выбирать какие-либе сопостаЕшмые (стандартные) состояния. В качестве последних обычно принимают состояния реагирующей (неравновесной) системы, в которых концентрации каждого вещества равны 1 моль/кг ЬЬО (или парциальные давления равны 101 кПа), а вещества находятся в модификациях, устойчивых в данных условиях. Изменение энергии Гиббса для процессов, в которых каждое вещество находится в стандартном состоянии, принято обозначать А6 °, Введение стандартного состояния весьма удобно, так как если при этом фиксирована и температура, то величина AG° отражает только специфику реагентов. Поэтому подобно тепловым эффектам и энтропиям принято приводить в таблицах стандартные изменения энергии Гиббса образования веществ AG° (чаще всего AG 2os)- Имея значения AG] и S° для веществ, участвующих в реакции, можно с помощью уравнений (2.17), (2,23) и (2.24) вычислить АН° реакции. [c.189]


Смотреть страницы где упоминается термин Энтропия таблицы: [c.65]    [c.62]    [c.267]    [c.574]    [c.162]    [c.102]    [c.27]    [c.28]    [c.252]    [c.182]   
Физическая химия Том 1 Издание 5 (1944) -- [ c.437 ]




ПОИСК







© 2024 chem21.info Реклама на сайте