Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциалы диффузионные электродные

    ЭМИССИЯ электронов из металла в вакуум (рис. 106, а) — контактный потенциал второго рода (работа выхода электрона) переход электронов из одного металла в другой (рис. 106, б) — контактный потенциал Вольта переход катионов из металла в электролит (рис. 106, в) или из электролита в металл (рис. 106, г) — электродный потенциал-, неэквивалентный переход ионов из одного электролита в другой (рис. 106, 3) — диффузионный потенциал. [c.149]


    В процессе гальваностатической кулонометрии диффузионный предельный ток уменьшается с уменьшением концентрации растворенных веществ. Поскольку для работы установки необходима постоянная сила тока, должны протекать и другие электродные реакции (других ионов или воды), что обусловливает увеличение электродного потенциала. Эти электродные реакции нарушили бы 100%-ный выход по току и сделали бы невозможным кулонометрическое определение веществ. [c.273]

    На практике редко встречаются простые электрохимические системы, для которых кинетические закономерности стадии разряда — ионизации можно было бы экспериментально изучить как вблизи равновесного потенциала, так и при значительном удалении от равновесного состояния. Это связано с различной зависимостью от потенциала диффузионной стадии электродного процесса и стадии разряда — ионизации. С одной стороны, после достижения предельного диффузионного тока скорость диффузионной стадии не зависит от потенциала. С другой стороны, по.мере удаления от равновесного потенциала [c.254]

    Первые два члена в правой части этого равенства относятся к омическому падению потенциала и электродной реакции соответственно. Последний член описывает диффузионный потенциал [уравнение (70-7)]. Последние два члена выражены через градиенты электрохимических потенциалов нейтральных комбинаций ионов и обраш,аются в нуль при постоянных концентрациях, т. е. в случае постоянной проводимости раствора к. [c.417]

    Ситуация сейчас может выглядеть достаточно запутанной, особенно в отношении диффузионного слоя, так как мы привели несколько альтернативных уравнений. Предположим, что имеется только один реагент и что уравнение (130-7) описывает диффузионный слой, а уравнение (126-8) или (127-2)—концентрационное перенапряжение. Тогда основными неизвестными величинами являются плотность тока и концентрация на поверхности электрода. Эти величины должны согласоваться с величиной полного перенапряжения г], которое получается после вычитания омического падения потенциала из электродного потенциала. [c.430]

    Зависимость энергии активации от потенциала диффузионной части двойного слоя указывает на связь скорости электродного процесса не только со смещением потенциала металла от равновесного значения, но и со строением двойного электрического слоя. Величина в существенной мере определяется концентрацией раствора и наличием в нем поверхностно-активных веществ, способных адсорбироваться на электроде. При достаточно большой концентрации раствора и соответственно малой величине размытой части двойного слоя значение потенциала 1151 может быть принято равным нулю. В этом случае при замене потенциала ф величиной Афэ выражение для скорости электродного процесса (например, анодного окисления) приобретает вид [c.18]


    При этом на границе соприкосновения металла с раствором образуется двойной электрический слой (рис. 80) и возникает определен ный скачок потенциала, называемый электродным потенциалом. Двойной электрический слой имеет сложное строение. Около поверхности металла наблюдается повышенная концентрация ионов со знаком заряда, обратным заряду поверхности. Она убывает по мере удаления от поверхности металла. Слой ионов, прилегающий непосредственно к пластинке, называется адсорбционным, а наружный слой, где концентрация постепенно убывает, называется диффузионным (см. рис. 80). Следует иметь в виду, что между ионами металла и ионами в растворе существует динамическое равновесие, т. е. когда происходит переход ионов Си из раствора в металл, то одновременно, и с той же скоростью, происходит обратный переход Си ионов из твердой фазы в раствор. [c.212]

    Однако сдвиг потенциала от обратимой величины является здесь следствием чисто концентрационных изменений и поэтому значение потенциала электрода под током можно рассматривать как новое значение равновесного потенциала ё, отличающееся от исходного ё только тем, что оно отвечает теперь другим значениям концентрации или, точнее, активпости участников электродной реакции. Иными словами, для описания диффузионного перенапряжения как явления квазиравновесного можно использовать чисто термодинамический метод. В таком случае существенными являются лишь начальное и конечное состояния системы, а пути перехода между ними, равно как и механизм, лежащий в основе этого перехода, не имеют значения. Пусть на г лектроде протекает реакция [c.299]

    ЭДС гальванического элемента Е равна разности условных электродных потенциалов его полуэлементов и Ег, если величиной диффузионного потенциала можно пренебречь  [c.312]

    Особенностью контроля скорости электродного процесса диффузионным массопереносом являегся сохранение электродного равновесия, так что потенциал электрода, несмотря на протекание в цепи тока, описывается уравнением Нернста  [c.275]

    Э. д. с. какого-либо элемента, если игнорировать диффузион- ный потенциал, легко определяется как разность электродных потенциалов  [c.429]

    Поляризация электродов — отклонение потенциала от равновесного значения в реальных условиях электролиза. Поляризация электродов вызвана замедленностью протекання промежуточных или диффузионных стадий электродного процесса она обусловливает перенапряжение и, следовательно, повышение электродных потенциалов. [c.79]

    В такой цепи мы имеем две электродные разности потенциалов Я] и Яг и один диффузионный потенциал Яд. Не рассматривая пока диффузионного потенциала, определим соответствующие электродные потенциалы Е] и 2 по ур. (ХИ1, 12)  [c.437]

    Рассмотрим процесс, при котором в растворе наряду с потенциал-определяющими катионами в большом избытке содержатся индифферентные соли, ионы которых не участвуют в электродных процессах, но переносят ток (соли щелочных металлов, аммония). Потенциалопределяющие катионы поступают к электроду практически только диффузией их число переноса О- Предельная плотность тока в этих условиях называется диффузионной  [c.503]

    Потенциал полуволны ( 1/2) является важнейшей полярографической характеристикой это потенциал, при котором достигается величина тока, равная половине диффузионного (см. рис. 47) Ец2 не зависит от концентрации электроактивного вещества и является табличной величиной. Величина потенциала полуволны определяется главным образом величиной стандартного окислительно-восстановительного потенциала системы, соответствующей электродному процессу (например, Zn2+/Zn или Fe +/Fe2+), и несколько изменяется с изменением ионной силы раствора. Необходимо учитывать, что в полярографии значения потенциалов принято относить к значению потенциала насыщенного каломельного полуэлемента "нас. к. э = 0,2484 В. [c.155]

    Разность потенциалов между электродом и раствором называется электродным потенциалом, а между двумя различными растворами— диффузионным потенциалом. Э. д. с. гальванического элемента определяется в основном разностью между электродными потенциалами. Потенциал металлического электрода, погруженного в раствор соли того же металла с активностью ионов а п+. вычисляют по формулам для 25° С [c.147]

    На практике редко встречаются простые электрохимические системы, для которых кинетические закономерности стадии разряда — ионизации можно было бы экспериментально изучить как вблизи равновесного потенциала, так и при значительном удалении от равновесного состояния. Это связано с различной зависимостью от потенциала диффузионной стадии электродного процесса и стадии разряда — ионизации. С одной стороны, после достижения предельного диффузи- -онного тока скорость диффузионной стадии не зависит от потенциала. С другой стороны, по мере удаления от равновесного потенциала скорость стадии разряда — ионизации очень резко возрастает. Таким образом, при токах обмена 10 5 А/см , даже при потенциалах, [c.239]


    Олдхэм и Перри [430] разработали импульсный полярографический метод для импульсов с возрастающей амплитудой, согласно которому сравниваются волны, полученные при катодной и анодной развертках, начинающихся с потенциала диффузионного полярографического плато. Предельный ток развертки анодного полярографического импульса, начинающейся с диффузионного плато реакции восстановления, сильнейшим образом зависит от обратимости электродного процесса. Для обратимого восстановления отношение высоты волны обратной анодной развертки к высоте волны начальной катодной развертки составляет 1 1, а для необратимого процесса приближается к 1 7. [c.223]

    Zn/ZnSO и УСи/СиЗО, - электродные потенциалы 1 2п/Си контактный потенциал — диффузионный по- [c.146]

    Скачки потенциала между точками а и Ь я д п г следует от[1ести к поверхностным потенциалам между металлом М и вакуумом V их можно обозначать соответственно через у.ум, Хм V- Естественно, что у V м V Скачок потенциала между точками с и расположенными в металлических фазах. Нг и М1, представляет собой разность соответствующих внутренних потенциалов — Ям,.м2. Точки е—/ и п—р — это места, где локализуются разности внутренних потенциалов металл 1—раствор 1 и раствор 2 — металл 2 их следует записывать соответственно й м,д, и (потенциалы ьм часто называют также нерпстовскнми и обозначают, как и электродный потенииал, буквой < , хотя в действительности физический смысл их иной). Разность потенциалов между точками а я В представляет собой вольта-потенциал между металлами М, и Мг, т. е. величину Км,,м а разность потенциалов в точках В и С является вольта-потенциалом между металлом М и раствором Ь],т. е. Км,,ь,-Наконец, скачок потенциала между точками I и т является гальвани-потенциалом между растворами Ь и Ьг и записывается как Здесь следует различать два случая. Если растворы Ь] и Ег отвечают двум несмешивающимся растворителям, то будет гальвани-потенциалом между двумя жидкостями или фазо-вы.м жидкостным потенциалом. Если же растворы Ь) и Ьг отличаются друг от друга природой или концептрацией электролита, но не природой растворителя, то этот потенциал будет диффузионным потенциалом его обозначают обычно как [c.31]

    Диффузионным церенаяряженисм г]д называется отклонение потенциала электрода под током от его равновесного значения, вызванное замедленностью стадии транспортировки участников электродной реакции. [c.299]

    Если другие стадии электродной реакции протекают обратимо или со скоростями, несравненно более высокими, чем скорость транспортировки, то все изменение потенциала электрода, обусловленное прохождением тока, можно отождествить с диффузионным пе-рспапряжсннем. В этом случае для диффузионного перенапряжения оудст справедливым уравнение (14.6) в форме [c.299]

    Значение явлений диффузионного перенапряжения для электрохимических процессов. Уравнения, описывающие диффузионное перенапряжение, основаны на предположении о сохранении термодинамического равновесия между электродом и электро-лито.м и на формуле Нернста для обратимого потенциала. Исследование диффузионного перенапряжения не может дать поэтому никаких дополнительных сведений ни с действительном шути протекания электродной реакции, ни о стадиях, составляющих эту реакцию. Вместе с тем применение экспериментальных методов, основанных иа явлениях диффузионного перенапряжения — ртутногО капельного мегода и вращающегося дискового электрода,— позволяет определить многие величины, играющие важную роль в кинетике электродных процессов и в элеюрохимии вообще, а также установить, является ли диффузия единственной лимитирующей стадией. [c.319]

    Если У>и, т. е. подвижность лпнопа больше подвижности катиона, то д>0, т. е. диффузиппиьи потенциал прибавляется к разности электродных иотенциалов. Если же У<0, то диффузионный потенциал имеет обратньп" знак относительно Ец и вычитается из электродного потенциала. Величина д невелика для растворов, отношение концентраций которых равно 10, значение находится в пределах 30 мв ири / = 0,20 0,70. Для КС1 числа переноса близки к 0,5, и при т /п" = 10 1 величина д= 1 мв. [c.567]

    Помимо контроля скорости реакции диффузионным процессом, характерного для обратимых реакций, существует контроль переносом заряженных частиц (электронов или ионов) через границу раздела электрод—раствор. В этом случае электродную реакцию называют необратимой. К необратимым процессам урапнепие Нернста неприменимо, поскольку на значительной части поляризационной кривой поляризация электрода при протекании тока не связана с изменением концентрации электродно-активного вещества в приэлектродной области, последнее просто отсутствует. Рассмотрение теории замедленного разряда приводит к следующему выражению, связывающему потенциал электрода и силу поляризующего тока [c.277]

    Важная разновидность вольтамперометрии с линейной разверткой— циклическая вольтамперометрия с треугольной раз-верткой потенциала. Если в первом случае электрод поляри-зует единичным импульсом линейно изменяющегося потенциала, то во втором на электрод подают серию импульсов поляриза ции, линейно изменяющейся сначала в катодном, а затем в анодном направлении. График изменения потенциала во вре мени имеет вид равнобедренного треугольника и потенциал электрода как бы качается между заданными начальным и конечным значениями. В случае обратимой электродной реаК цин, вещество, восстановившееся в ходе катодной поляризации, в силу быстроты изменения потенциала не успевает за счет диффузионного переноса покинуть приэлектродиый слой и обратно окисляется в ходе второй части цикла — анодной поляризации электрода. Полярограмма приобретает вид двух равных пиков токов разной полярности (см. рис. 5.16), сдвинутых относительно друг друга на 57 мВ. Если продукт реакции иестабилен, то анодный ток равен нулю. Это является хорошим методом выяснения природы электродной реакции. [c.289]

    Прежде чем приступить к титрованию, необходимо исследовать способность реагирующих веществ к электродной реакции. Для этого снимают вольтамперные кривые отдельно титруемого вещества и титранта. На основании полученных кривых устанавливают потенциал, при котором следует проводить титрование. Величина его должна соответствовать (см. рис. 47) диффузионному току хотя бы одного из указанных веществ. Кроме того, необходимо убедиться в том, что изменение концентрации деполяризатора вызывает пропорциональное изменение диффузионного тока. Особенно необходимо это в случае применения в качестве титрантов органических реагентов (диметилглиоксим, 8-оксихинолин и др.), так как для них такая цропорциснальность сохраняется часто лишь в узком интервале. После выполнения указанных предварительных исследований можно проводить титрование. [c.161]

    Если из общей толщины диффузионного слоя выделить на расстоянии /от электрода такой слой, который теряет связь с поверхностью и может перемещаться вместе со всей жидкой фазой относительно твердой фазы, то потенциал, возникающий в этом слое, и представляет собой -потенциал. Таким образом, по теории Гуи — Чапмена можно показать наличие -потенциала как части электродного потенциала, но нельзя объяснить перезарядку поверхности, т. е. изменение знака -потенциала, поскольку его знак, согласно рассматриваемой теории, должен быть одинаковым со знаком электродного потенциала. [c.102]

    Скачки потенциала (1) и (7) —это взаимно компенсирующиеся скачки между металлом Мз и вакуумом. Далее, (6) + (2) = — контактный потенциал (3) и (5) электродные потенциалы и (4) — диффузионный (жидкостный) потенциал. С учетом противоположного направления одинаковых скачков потенциалов (1) и (7) и также пpoтивoпoлoлtнoгo неодинаковых скачков (3) и (5), и воспользовавшись рис. XII. 3, б и сделанными определениями скачков, запишем уравнение (XII. 6) в форме.  [c.134]

    В принципе можно выбрать такую силу тока в электролитической цепи, чтобы она составляла менее 1 % величины диффузионного предельного тока. В этом случае мешающие реакции начинают протекать только после того, как прореагировало 99% определяемого вещества. Попрешность составляет, таким образом, менее —1%. Но проведение анализа при небольшой силе тока требует больших затрат времени. Поэтому обычно поступают по-другому в анализируемый раствор вво-.дят довольно большую концентрацию вспомогательного ре-.агента, окислительно-восстановительный потенциал которого немного больше окислительно-восстановительного потенциала определяемого иона. К началу электролиза определяемый ион опять восстанавливается или окисляется. В соответствии с уменьшением концентрации определяемого иона у поверхности электродов электродный потенциал снова возрастает, но только -ДО тех пор, пока его значение ие станет равным значению потенциала иона вспомогательного реагента. После этого окисляется или восстанавливается реагент. Поскольку его концентрация намного больше концентрации определяемого иона, обеспечивается дополнительная подача вещества путем диффузии к поверхности электродов. Электродные потенциалы остаются постоянными (не происходит разложения воды 100%-ный выход ло току), остается постояиным значение Яг, а следовательно, и г. Диффундирующий от электродов вспомогательный реагент, являющийся окислителем или восстановителем, реагирует в растворителе с определяемым ионом, и, таким образом, действует только как посредник. [c.274]


Смотреть страницы где упоминается термин Потенциалы диффузионные электродные: [c.359]    [c.234]    [c.146]    [c.93]    [c.112]    [c.163]    [c.49]    [c.159]    [c.297]    [c.504]    [c.286]    [c.12]    [c.283]    [c.155]    [c.504]   
Физическая и коллоидная химия (1974) -- [ c.270 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциал диффузионный

Потенциал электродный потенциал

Электродный потенциал



© 2025 chem21.info Реклама на сайте