Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Регенерация тепла в теплообменниках

    Промежуточный подогрев реакционной смеси осуществляется в змеевиках следующих секций печи 7. Продукты реакции по выходе из реактора 4 снизу проходят систему регенерации тепла (теплообменник 6 и водяной холодильник 8). В отличие от обычных схем разделение жидкой и газовой фаз происходит в газосепараторе 9 низкого давления (1 МПа). Газ из аппарата 9 компримируется компрессором 15 до давления 1,5 МПа, смешивается с жидкой фазой, подаваемой насосом 11, смесь охлаждается в холодильнике/5 и разделяется в газосепараторе высокого давления 12. Такая последовательность сепарации, вызванная низким давлением в реакционной зоне, уменьшает унос бензина с водородсодержащим газом и повышает содержание в газе водорода. [c.42]


    Удельные расходные показатели установки (расход на 1 те сырья топлива, воды, пара, электроэнергии) являются весьма важной технико-экономической характеристикой. Расходные показатели могут характеризовать как экономичность данного процесса, так и работу данной установки. Так, например, процесс термического крекинга тяжелого сырья может быть вполне экономичным, но осуществление его на данной установке будет сопровождаться повышенным расходом тоилива из-за недостаточного использования системы регенерации тепла (теплообменников) или нерациональной эксплуатации печей. В атом случае сопоставление расхода топлива, запланированного с учетом обобщенного опыта работы аналогичных установок, с фактическим укажет на слабое место в эксплуатации установки. [c.184]

    Промежуточный подогрев реакционной смеси осуществляется в змеевиках следующих секций печи 7. Продукты реакции по выходе из реактора 4 снизу проходят систему регенерации тепла (теплообменник 6 и водяной холодильник 8). В отличие от обычных схем разделение жидкой и газовой фаз происходит в газосепараторе 9 низкого давления (1 МПа). [c.67]

    Для регенерации тепла применяются кожухотрубчатые теплообменники и теплообменники труба в трубе . [c.145]

    Выбор параметров технологического режима проводили при температурах не выше 300 °С с тем, чтобы гарантировать минимальное количество продуктов разложения в целевой фракции и побочных продуктов разделения. Для регенерации тепла горячих потоков принята схема последовательного нагрева всего потока сырья в теплообменниках. Основные расчетные данные работы установки по оптимальной схеме приведены в табл. 1У.9. [c.220]

    На одной установке смонтировано дополнительно по одному конденсатору смешения для верхнего продукта основной ректификационной колонны. В результате значительно разгрузились основные конденсаторы, что позволило проводить их ремонт в процессе работы. На другой установке осуществлен боковой вывод солярового дистиллята из второй колонны вместо двух боковых погонов— керосина и дизельного топлива —отбирают три (керосин, дизельное топливо и соляровый дистиллят). Это мероприятие дало возможность увеличить отбор светлых нефтепродуктов. Для регенерации тепла дизельного топлива и солярового дистиллята дополнительно установлены теплообменники кожухотрубчатого типа. В связи с этим температура предварительного подогрева нефти повысилась на 13—15Х. На обеих установках проводились мероприятия по сбору и использованию газа, выделяющегося при перегонке нефти. [c.75]


    Сырая нефть (рис. 47) прокачивается насосами двумя потоками через теплообменники, где нагревается до 159 и 145 °С за счет регенерации тепла горячих нефтепродуктов, и направляется четырьмя параллельными потоками в электродегидраторы. На прием сырьевых насосов подается щелочно-содовый раствор и деэмульгатор ОЖК. В электрическом поле высокого напряжения эмульсия [c.114]

    Для регенерации тепла остатков, загрязненных коксообразными и минеральными веществами, рекомендуется применять теплообменники типа труба в трубе , в которых благодаря большим скоростям дви. кения в трубном и межтрубном пространствах почти не происходит отложения грязи. [c.74]

    Таким образом, нри повышении температуры нагрева сырья в теплообменниках от 160 до 180° С коэффициент регенерации тепла увеличился от 42,2 до 53%, т. е. на 10,8%. [c.86]

    Необходимо дальнейшее совершенствование методов оптимизации систем теплообменников (таких, например, как системы регенерации тепла АЭС и ТЭС, системы аппаратов технологических производств и др.) с целью создания достаточно надежных и простых в реализации технико-экономических оптимизационных моделей систем в целом. При этом моделями нижнего [c.319]

    Применяемая в химических, нефтехимических и родственных им производствах теплообменная аппаратура разнообразна как по своему функциональному назначению, так и по конструктивному исполнению. В химической технологии нашли широкое применение теплообменники для регенерации тепла жидких и газообразных сред, холодильники, предназначенные для охлажде ния среды каким-либо хладагентом, конденсаторы, работающие под избыточным давлением и в вакууме, и предназначенные для конденсации чистых паров и парогазовых смесей, дефлегматоры, применяемые для частичного выделения жидкой фазы из паровой или парогазовой смеси, испарители с паровым пространством и без него, используемые для испарения среды при ее кипении, и т. д. [c.335]

    Расчет теплообменных аппаратов состоит из следующих операций 1) определение тепловой нагрузки, Вт (ккал/ч) 2) определение средней разности температур 3) расчет коэффициента теплопередачи, Вт/(м -К) или ккал/(м ч °С) 4) определение поверхности теплопередачи, м 5) определение числа теплообменников выбранного типа, необходимого для регенерации тепла потоков. [c.234]

    Подсчитать прирост коэффициента регенерации тепла на атмосферной установке перегонки нефти, если в результате увеличения температуры нагрева нефти в теплообменниках от 180 до 200°С расход топлива в печи снижается на 6%. На установку поступает 62 500 кг/ч нефти =0,910). Начальная температура нефти 20 °С расход топлива 1050 кг/ч (Q = = 41 900 кДж/кг) к. п. д. печи — 0,74. [c.83]

    При расчете регенерации тепла необходимо, используя технико-экономические показатели, обосновать не только выбор стандартной конструкции аппарата и его размеры, но и гидродинамический режим работы. Необходимо учесть, что повышение скорости теплообменивающихся потоков, обеспечиваемое выбором соответствующего аппарата или увеличением числа ходов в нем, позволяет иметь высокие коэффициенты теплопередачи, уменьшить поверхность теплообмена, а следовательно, и затраты на приобретение и сооружение теплообменников, но при этом возрастает гидравлическое сопротивление, что увеличивает расход электроэнергии на перемещение потоков через аппарат, т е. увеличиваются эксплуатационные затраты. [c.608]

    Количество дистиллята 0=19 000 кг/ч, плотность его 4° =0,834, начальная температура Гн = 2б5°С, конечная температура 7 к=Ю0 С. Для регенерации тепла предполагается установить трубчатые теплообменники с плавающей головкой, имеющие один ход в межтрубном пространстве и два Х(да в трубном. Поверхность нагрева одного теплообменника —70 м . [c.473]

    Реакционная смесь нагревается в теплообменнике 11 и печи 3 и поступает в верхнюю секцию реактора 2. Переменный диаметр реактора позволяет неравномерно распределять катализатор между секциями, в соответствии с протекающими реакциями. Продукты с низа реактора 2 проходят систему регенерации тепла и холодильники-конденсаторы 13. Первое разделение жидкой и газовой фаз происходит в газосепараторе 4 низкого давления (при 1 МПа). Газ из этого газосепаратора компримируют компрессором 5 до 1,5 [c.62]

    Благодаря регенерации тепла горячих потоков тепловая нагрузка печей уменьшается на 20—25%. Более эффективное использование тепла горячих потоков достигается при совмещении процессов, например электрообессоливания и атмосферно-вакуумной перегонки на установках ЭЛОУ—АВТ (рис. 1.49). Для нагрева нефти перед электродегидраторами необходимо затратить много тепловой энергии. Так, на установке производительностью 3 млн. т в год нефти для электрообессоливания при 115°С требуется 21,9 млн. Вт тепла, а в случае обессоливания при 180°С — 40,8 млн. Вт. На установке ЭЛОУ— АВТ производительностью 3 млн. т в год нефти от горячих нефтепродуктов в теплообменниках снимается около 71,1 млн. Вт (согласно проектным данным). При оптимальных теплообменных схемах температура нагрева нефти достигает 250 °С и выше. Благодаря утилизации тепла горячих нефтепродуктов значительно уменьшается расход охлаждающей воды. [c.139]


    В атмосферных колоннах циркуляция орошения с успехом осуществлена под лигроиновой тарелкой (фиг. 41,6). Регенерация тепла циркуляционного орошения а) существенно повышает подогрев сырья в теплообменниках, увеличивая до 30% производительность перегонной установки б) разгружает верх колонны от большого объема паров, уменьшает скорость и сопротивление движению их, требует меньшей поверхности конденсаторов. [c.110]

    Выходящий из теплообменника поток теплоносителя при 200° С разделяется на две части одна поступает в закалочный аппарат 2, а другая — в колонну 3. Таким образом, осуществляется регенерация тепла высоконагретых ГП методом циркуляции теплоносителя. [c.239]

    По этой схеме нефть насосом 1 подается через систему регенерации тепла (теплообменники 2) и после отделения от воды и грязи в водогрязеотделителе 3, пройдя теплообменник 4, поступает в испаритель 7, где из нефти отделяются ле1 кие фракции. Из испарителя 7 нефть горячим насосом 5 подается через трубчатую печь 6 в ректификационную колонну 8. Легкие фракции из испарителя поступают в основную колонну и ректифицируются вместе с более тяжелыми фракциями. В описанной схеме испарение осуществляется двукратно, но ректификация паров производится совместно. [c.75]

    В основу классификации положен принцип построения схем ступеней вакуумной конденсации (системы конденсации — системы эжекторов). Изучение большого числа вакуумных колонн действующих установок АВТ показало, что в промышленности используют в основном пять типов конденсационно-вакуумных систем. Приведенные на рисунке схемы различаются как по числу, так и по оформлению ступеней вакуумной конденсации. По принятой классификации первая ступень конденсации соответствует верхнему циркуляционному орошению (В1Д0) вакуумной колонны вторая— конденсаторам поверхностного типа, сочетающим теплообменники для регенерации тепла парогазового тютока и водяные или воздушные конденсаторы третья — конденсаторам смешения в конденсаторах барометрического типа водой или одним из продуктов этой же колонны и, наконец, четвертая ступень — конденсации парогазового потока между ступенями эжекторов. [c.197]

    Пары растворителя, выходящие с верхней части колонны 6, содержат небольшое количество влаги. Для освобождения от влаги эти пары после регенерации тепла в нагревателе пародистиллятного куба 7 и в теплообменнике 4, где они в основном конденсируются, направляют в осушительную камеру 19. Осушительная камера представляет собой полый сосуд, в котором разделяются поступающие пары и жидкость. При этом жидкость, выделяющаяся при частичной конденсации паров влажного растворителя, является безводным растворителем, который выводят из нижней части осушительной камеры 19 и через холодильник 21 направляют на депарафинизациопную часть установки. Нескон-денсированные пары (азеотропная смесь паров дихлорэтана и воды с избытком паров дихлорэтана) для удаления воды направляют в осушительную колонну 25. [c.239]

    Змеевиковые теплообменники были первыми аппаратами, применяемыми для регенерации тепла мазутов и полугудронов. Их укладывали по дну подогревателя сырья. По трубам змеевика прокачивали горячий остаток охлаждаясь, он отдавал тепло сырью. Вследствие возможности размещения небольшой поверхности теплообмена, низкого коэффициента теплопередачи — менее 30 ккалЦм X X ч-град), громоздкости и опасности в пожарном отношении такие [c.254]

    Их применяют главным образом для регенерации тепла высоковязких и легкозастываюш их гудронов и крекпнг-остатков. Горячий теплоноситель прокачивается по внутренней трубе, более доступной для очистки от механических загрязнений или от пробок застывшего продукта. Однотрубные теплообменники труба в трубе металлоемки, громоздки и сравнительно дороги. [c.255]

    Подбор аппаратов АХМ. Подэор и поверочный расчет основных теплообменных аппаратов (испарителя, конденсатора, дефлегматора и теплообменников для регенерации тепла) проводится по общей схеме, представленной в гл. II. При )асчете абсорбера, выпарного элемента генератора и ректификацион-рой колонны следует использовгть материал глав III, V—VII. Примеры расчета этих аппаратов даны в литературе [5]. [c.191]

    При несовпадении заданной температуры стенки с расчетными по формулам (1.215) и (1.216) делают пересчет, задавшись другой температурой стенки между заданной в первом нриближении и расчетной. После расчета теплопередающей поверхности определяют число теплообменников выбранного типа для регенерации тепла данного потока. [c.118]

    Жидкий пропан подается в испаритель 7, а пресная вода, пройдя теплообменник 3, переохладитель 4 пропана и конденсатор 5, отводится из установки. Избыток паров пропана, необходимый для покрытия потерь тепла, после I ступени компрессора 6 поступает во 1 ступень компрессора и после сжатия, пройдя конденсатор 5 и переохладитель 4, дросселируется в конденсатор 9. Для уменьшения затрат энергии в схеме осуществляется регенерация тепла. Турбины 1 используют энергию потоков пресной и соленой воды, имеющих избыточное давление, и предназначаются для регенера- [c.12]

    На установках АВТ продукты, выходящие из ректификационных колонн, имеют довольно высокие температуры, например на АТ —от 100 до 300 °С, а на ВТ —от 300 до 400 °С. Использование тепла этих горячих продуктов целесообразно с точки зрения эко номии топлива на нагрев сырья н экономии воды на охлаждение этих продуктов до температур, безопасных при их транопортиро-вании и хранении. Целесообразность регенерации тепла потока зависит от конкретных условий. Теплообменные аппараты классифицируют в зависимости от назначения (теплообменники, конденсаторы, холодильники, кипятильники, испарители), способа передачи тепла (поверхностные и смешения), а также от конструктивного оформления (кожухотрубные жесткой конструкции с плавающей головкой, с и-образными трубками погружные змеевиковые, секционные оросительные типа труба в трубе конденсаторы смешения с перфорированными полками, с насадкой воздушного охлаждения горизонтального, шатрового, зигзагообразного, замкнутого типа рибойлеры с паровым пространством с плавающей головкой, с и-образными трубками). Погружные и оросительные теплообменные аппараты применяют в качестве конденсаторов и холодильников. Кожухотрубные аппараты можно использовать как конденсаторы, холодильники, теплообменники по конструкции они мало различаются. Такие теплообменные аппараты обеспечивают более интенсивный теплообмен при меньшем расходе металла на единицу теплопередающей поверхности, чем аппараты погружного типа, что обусловило широкое их использование. В последнее время в качестве конденсаторов и холодильников широко используют аппараты воздушного охлаждения. [c.70]

    Для обеспечения более равномерного распределения потоков паров и флегмы по высоте сложной колонны, разгрузки вышележащих сечений и регенерации тепла съем части тепла с целью образования дополнительного потока флегмы производят промежуточным циркуляционным орошением в одном-двух сечениях на верху соответствующих простых колонн (рис. IV-32). Поток промежуточного циркуляционного орошения (ПЦО) д при температуре прокачивается через регенеративный теплообменник, где отдает количество тепла Опцо. например нефти, и при более низкой тем- [c.164]

    Рекуперация тепла газов сгорания может улучшить экономические показатели эксплуатации обычных (и, конечно, каталитических) установок дожигания. Рекуперация тепла может осуществляться либо в системах регенерации (кольцевой теплообменник Монгстрома), либо в рекуперационных установках, где теплопере-нос происходит через гофрированные металлические поверхности. [c.187]

    Теплообменники — аплараты для регенерации тепла, уносимого отходящими потоками. Целевым процессом, протекающим в них, может являться нагрев холодного потока, или охлаждение горячего, или тот и другой процессы в равной степени. [c.161]

    Теплообменники. Теплообменная аппаратура в реакторных блоках установок каталитического риформинга и гидроочистки служит для подофева газосырьевой смеси продуктами реакции перед входом ее в нафевательную печь. Количество тепла, передаваемое газосырьевой смеси, зависит отсхемы регенерации тепла, глубины охлаждения продуктов реакции и поверхности нагрева или охлаждения. [c.177]

    Регенераторы тепла, или теплообменники. Змеевиковые теплообменники. Эти аппараты были первыми из применявшихся на нефтеперегонных заводах для регенерации тепла мазутов и нолу-гудронов. Змеевики укладывались или по дну резервуара, или но всему объему хранилища (фиг. 166). По трубам змеевшга прокачивался горячий кубовый остаток, который, охлаждаясь, отдавал свое тепло сырью, поступающему на перегонку. Аппараты одновременно служи.чи водогрязеотделителями. Вследствие невысокого коэфициента теплопередачи (ниже 30 ккал м час), небольшой поверхности теплообмена на единицу сырья, опасности в пожарном отношении и громоздкости эти аппараты не получили [c.276]

    Ректификационные установки для перегонки нефти до Maayia. Для однократного испарения нефти до мазута типичной является приведенная выше технологическая схема установки, изображенная на фиг. 257. Она состоит из трубчатой печи, ректификационной колонны с выносными отпарными колоннами, теплообменной, конденсационной и охладительной аппаратуры. Сырье прокачивается вначале через теплообменники циркулирующего орошения, затем через дестиллатные и остатковые теплообменники в водо-грязеотстойники. Отсюда нефть иод давлением сырьевого насоса проходит через печь в ректификационную колонну. Неиспользованным остается тепло бензиновых паров. Эффективность регенерации тепла бензиновых паров для предварительного нагрева исходного сырья оспаривается рядом положений. Основным из них является пониженная средняя разность температур и, как следствие, требуемая для теплообмена огромная поверхность конденсаторов. Кроме того, малейшая течь хотя бы в одной из трубок пародестиллатных теплообменников вызывает порчу цвета бензинового дестиллата и превращает его в некондиционный товар. Поэтому на многих нефтеперегонных заводах отказались от использования тепла конденсации бензиновых паров. [c.361]

    Регенерация тепла в парожидкостных компрессионных установках имеет ограниченное применение. Это объясняется тем, что введение регенерации не меняет отношения давлений Рк/Ри, поскольку они однозначно определяются 7 и 7 . Тем с.шым исключается главное преимущество регенерации — уменьшение Рт/Рп, т. е. уменьшение степени повышения давлений в компрессоре при тех же и То, достигается только понижение температуры в точке 4. Обычно это понижение бывает небольшим, так как высок ая теплоемкость жидкости в сочеонии с относительно малой теплоемкостью перегретого пара приводит и резкому возрастанию разности температур на холодном конце регенеративного теплообменника. В результате возникают большие готери от необратимости как в теплообменнике, так и при дросселировании (из-за малого снижения Т4). В некоторых случаях эту трудность удается преодолеть путем использования 13 качестве рабочих тел смесей хладоагентов [8, 32]. [c.61]

    Штриховые линии относятся к идеальной установке, а сплошные — к действительной одноступенчатой абсорбционной водоаммиач-нэй установке с регенерацией тепла в теплообменнике раствора и охладителе конденсата. Зависимости э н—[(Тс) для идеальной установки построены по уравнению (5.3). При 7 = oпst и 7 н= onst и снижении температуры охлаждения удельный расход тепла в идеальной абсорбционной холодильной установке монотонно снижается с э н=оо при [c.125]

    Насыщенный раствор МЭА под давлением в абсорбере проходит теплообменник 3, где нагревается горячим регенерированным раствором до 100 °С, и поступает в десорбер 5 на регенерацию. Тепло для десорбции сообщается кипятильникол1 8, обогреваемым глухим [c.62]

    Теплообменники - аппараты для регенерации тепла, уносимого отходя-1ЦИМИ истоками. Целевым про1 ессом, протекающим п них, может являться нагрев холодного потока либо охлаждение горячего, либо тот и другой процессы в равной мере, [c.91]


Смотреть страницы где упоминается термин Регенерация тепла в теплообменниках: [c.173]    [c.350]    [c.117]    [c.117]    [c.66]    [c.652]    [c.88]    [c.124]    [c.205]   
Общие свойства и первичные методы переработки нефти и газа Издание 3 Часть 1 (1972) -- [ c.270 ]




ПОИСК





Смотрите так же термины и статьи:

Регенерация тепла



© 2025 chem21.info Реклама на сайте