Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплота, измерение

    Количество теплоты, подводимой (или отводимой) к произвольной массе вещества, обозначают Qt, а удельное количество теплоты, отнесенное к единице массы вещества, — (/. Теплоту в системе СИ измеряют в джоулях (Дж), килоджоулях (кДж) допускаются и такие единицы измерения, как калория и килокалория (ккал). [c.25]

    Теплота первой реакции равна 102 ккал. а второй — 347,5 ккал таким образом, энергия диссоциации связи С—Н в метане равна 102 ккал, а средняя энергия связи составляет 86,9 ккал. Последняя величина рассчитана по термохимическим данным и зависит от величины скрытой теплоты сублимации графита, а первая является экспериментальной величиной, полученной на основе кинетических измерений. Зависимость между ними заключается в том, что в данном случае сумма индивидуальных энергий диссоциации связи в СН , СНд, СНз которые сильно различаются между собой, должна быть равна четырехкратной средней энергии связи. Таблицы энергии связи, составленные, нанример, Паулин-гом [33], дают сведения о средней энергии связи и не имеют прямого отношения к проблемам разложения углеводородов, поэтому дальше будут рассматриваться только методы определения энергии диссоциации связи. Раньше всех стали изучать энергию диссоциации связи в сложных молекулах Поляни и сотрудники [7], которые исследовали пиролиз ряда иодидов в быстром потоке несуш,его газа при низких давлениях иодидов, В этих условиях, по их мнению, вторичные реакции не представляют важности, и измеренная" энергия активации соответствует энергии реакций  [c.14]


    Теплоемкость. Для измерения количества теплоты, подводимой к га у (или отводимой от него), надо знать удельную теплоемкость газа. Удельной теплоемкостью (или просто теплоемкостью) называется количество теплоты, которое необходимо подвести к единице количества вещества (или отвести от него), чтобы повысить (или понизить) его температуру на один градус. [c.25]

    Единицами измерения количества теплоты служат джоуль и калория (ГОСТ 8550—57). В практике расчетов необходимо различать малые калории (кал) и большие калории, или килокалории (ккал). Одна малая калория представляет собой количество тепла, которое необходимо для нагревания 1 г, а ккал — 1 кг воды на 1 (с 19,5 до 20,5° С) при нормальном атмосферном давлении. [c.21]

    В телах без внутренних источников теплоты измерения производят с помощью термопар или термометров сопротивления, устанавливаемых внутри тела. С помощью термометров сопротивления измеряют среднюю температуру на участке его расположения, а с помощью термопар — распределение температуры в теле. В результате размещения датчика температуры в теле искажается поле температуры в месте его расположения из-за нарушения однородности тела и из-за отвода (или подвода) теплоты по проводам и конструктивным элементам датчика. [c.409]

    Экспериментально Джоулем было установлено, что количество выделившегося тепла АР прямо пропорционально уменьшению АИ7 потенциальной энергии среды, т. е. совершенной работе. Коэффициентом пропорциональности между величиной совершенной работы в механических единицах (джоулях) и теплотой, измеренной в калориметрических единицах (калориях), является так называемый механический Эквивалент теплоты. Если же измерять и теплоту и работу в одних и тех же единицах, принимая одну калорию равной 4,184 дж, то коэффициент пропорциональности обращается в единицу, и можно написать для системы, претерпевшей циклическое превращение  [c.216]

    Такое же количество теплоты, измеренное в тех же самых единицах, было при этом взято из окружающей среды  [c.164]

    Известны несколько работ, в которых энтальпии гидрогенизации непредельных соединений проводились в растворе. Подлежащее гидрогенизации вещество помещалось в калориметр в тонкой стеклянной эвакуированной ампуле, которая разбивалась в начале главного периода опыта. В качестве катализатора использовалась платина, восстанавливаемая из окисла водородом в ходе самого эксперимента. Катализатор также помещался в калориметр в ампуле. Калориметрической жидкостью являлась уксусная кислота или спирт. Так как реакция протекала при температурах, близких к комнатной, и завершалась относительно быстро, каких-либо калориметрических трудностей при проведении этих работ не возникало. Тепловое значение калориметрической системы определялось при помощи электрического тока. Энтальпию гидрогенизации находили как разность общего количества теплоты, измеренной в опыте, и количества теплоты, выделяющейся при восстановлении катализатора. Последнюю находили в специально проводимых опытах [c.95]


    Тепловое значение калориметра для данного опыта 27,50 кал град. Подъем температуры 1,826°. Количество теплоты, измеренное в опыте, 50,22 кал. [c.412]

    Даже если обратимость реакции (2) при использованных температурах считать установленной, все же остается открытым вопрос о том, действительно ли давления кислорода, измеренные Бильцем и Мюллером, соответствуют равновесным давлениям разложения. Эти авторы указывают, однако, что эти давления были по крайней мере близки к равновесным, так как теплота разложения, рассчитанная на основании изотерм давления, хорошо совпадала с теплотой, измеренной калориметрически (ср. стр. 243). [c.214]

    Метод определения состоял в растворении металлического урана и тетрахлорида урана по отдельности в соляной кислоте, содержащей 10% хлорида железа (III), и в сравнении этих теплот (измерения проводились в ледяном цельностеклянном калориметре типа бунзеновского). Кислоту и хлорид железа брали в столь большом избытке, что тепловые эффекты, вызванные изменением концентрации, были ничтожно малы. Водород, выделяющийся при взаимодействии металлического уран-а с кислотой, может восстановить часть ионов железа (III) при расчетах это учитьшалось путем определения содержания двухвалентного железа с помощью сульфата церия (IV) после завершения растворения. [c.388]

    IV. Измерения коэффициентов теплообмена при нестационарном тепловом режиме зернистого слоя. Преимуществом этих методов является то, что средние коэффициенты теплообмена находятся по результатам измерения температур газа на входе и выходе из слоя без измерения температур элементов слоя и количества переданной теплоты. Используют два основных режима нестационарного нагревания (охлаждения) зернистого слоя потоком газа, текущего через слой при ступенчатом и при периодическом (синусоидальном) изменении температуры газа на входе в слой, [c.144]

    Теперь необходимо рассмотреть, какие виды подобия, кроме геометрического, встречаются в системах, используемых в химической технологии. В гл. 6 подробно рассматривались уравнения, описываюш ие элемент процесса, причем было получено три уравнения для потока компонента, теплоты (энтальпии) и импульса (количества движения). Каждое такое уравнение имело пять составляющих I — для конвективного потока II — для основного потока III — для переходящего потока IV — для источников V — для локальных изменений. В случае стационарных установившихся систем составляющая V равна нулю. В дальнейшем ограничимся рассмотрением только тех систем, в которых принимаются во внимание лишь четыре составляющие (с I по IV). Полученные в предыдущей главе уравнения (6-49) и (6-50) размерно однородны. Это значит, что размерности всех членов этих уравнений одинаковы и принадлежат к одной системе единиц измерения. Если мы рассмотрим не отдельные составляющие указанных уравнений, а их значения, отнесенные к какой-либо одной выбранной составляющей, то получим аналогичные (7-5) безразмерные величины, которые будут представлять собой отношения нескольких параметров. [c.78]

    Теплота сгорания определяется путем сжигания в калориметрической бомбе навески испытуемого нефтепродукта в атмосфере кислорода, измерения выделившегося при этом количества тепла и вычисления по результатам опыта теплоты сгорания. [c.197]

    Работа на этом этапе исследований охватывает также измерения и вычисления физико-химических величин (характеризующих исходные вещества, конечные продукты и реакционные системы), необходимых для проектирования процесса. Это термохимические, термодинамические и термокинетические величины, такие как теплота образования, теплоемкость, энтальпия и энтропия, кинетические константы, плотность, вязкость, коэффициенты теплопроводности и диффузии и т. п. Необходимо располагать значениями указанных величин не только для чистых (индивидуальных) реагентов, но и для их смесей, а также изучить равновесие в многофазных системах, участвующих в процессе. [c.9]

    В ходе калориметрических измерений теплот хемосорбции кислорода иа окислах металлов установлено влияние диффузии в твердом теле на измеряемые величины [1.7]. [c.8]

    Все методы измерения энергии диссоциации связи / —Н дают величины соответствующей энергии диссоциации связи/ —В путем комбинаций данных по теплотам образования В—В и / —Н. Надежность измерений энергии диссоциации связи можно оценить из сравнения величин, полученных различными методами (табл. 2). [c.16]

    Для расчета тепловых эффектов реакций в настоящее время приходится пользоваться таблицами теплот горения или образования из элементов в стандартных условиях, а в некоторых случаях энергиями связей экспериментальный материал по результатам термохимических измерений сконцентрирован в основном в таблицах Ландольта, а также в Справочнике физико-химических величин Технической энциклопедии. Новейшие данные публикуются в специальной литературе. [c.51]

    Значения теплот смачивания АН определяют калориметрическими измерениями. Что же касается удельных теплот смачивания Л, то для конкретных систем жидкость— тип катализатора и условий тренировки поверхности образцов они являются вполне определенными и могут быть взяты из таблиц 2. Таким образом, задача оиределения поверхности образцов катализаторов практически сводится к калориметрическому измерению теплот их смачивания , г, 7з  [c.86]


    В нешироких интервалах умеренных температур, в которых обычно производятся кинетические измерения, энергия актива-Ш1И, по-видимому, не зависит от температуры. Это можно объяснить тем, что энергия активации представляет собой теплоту образования промежуточного соединения, а разница в физических теплотах продуктов реакции и исходных веществ с изменением температуры изменяется незначительно. Однако в ряде случаев такое влияние температуры было обнаружено. Так, например, тщательное повторное изучение экспериментальных результатов, на анализе которых Аррениус основывал свою теорию, и данные более поздних исследований позволили установить некоторую зависимость от Г  [c.35]

    Теплота сгорания нефтяных газов может быть вычислена из анализов и данных для чистых соединений экспериментальные значения для газообразных топлив могут быть получены измерением в водяном проточном калориметре [293], в то время как теплота сгорания жидкостей обычно измеряется в калориметре-бомбе [294]. [c.201]

    Сравнение этих двух величин, измеренных в соответствующих единицах (с учетом ряда поправок), показывает постоянное отношение между ними, не зависящее от величины груза, размеров калориметра и конкретных количеств теплоты и работы в разных опытах. [c.29]

    Опытное определение удельной (с) или мольной (С) теплоемкости тела заключается в измерении теплоты Q, поглощаемой при нагревании одного грамма или одного моля вещества на —ix= [c.47]

    Кроме сложения ошибок, допущенных при измерении теплот сгорания реагентов, здесь имеет значение то, что теплота реакции между реагентами почти всегда меньше (и обычно много меньше) теплот сгорания реагентов. Так, в рассмотренном примере ДЯ в пять раз меньше величины А Ни, и ошибка в последней, [c.61]

    Многочисленные, весьма различные по своему устройству типы калориметров можно разделить на два основных типа—с постоянной температурой (например, ледяной калориметр) и с переменной температурой. При работе с последними проводят эксперимент одним из двух способов диатермическим (по старой терминологии—изотермическим) или адиабатическим. Для первого способа характерен обмен теплотой с калориметрической оболочкой, который необходимо тщательно учитывать. При адиабатическом способе измерения теплообмен устраняется и поправка не нужна. [c.76]

    Теплота смачивания. Когда жидкость приводится в соприкосновение с твёрдым телом, сродство жидкости к его поверхности обычно вызывает выделение теплоты. Измерения теплот смачивания весьма многочисленны. Это явление часто называют эффектом Пуйэ хотя Лесли обнаружил его на 20 лет раньше. Ранние экспериментальные результаты не представляют большого научного интереса, так как первые исследователи в большинстве случаев шли по пути наименьшего сопротивления, измеряя теплоту на грамм порошка и не пытаясь оценивать площадь поверхности. Паркс однако, измерял теплоту смачивания различных кварцевых порошков водой и нашёл, что она пропорциональна суммарной поверхности порошка и равна при 70° С 0,00105 кал1см или около 44 000 эрг/см . [c.268]

    Используя такой калориметр (от латинского alorimeter — измерение тепла), Бертло тщательно измерил количество теплоты, выделяемой в результате сотен различных химических реакций. Подобные эксперименты независимо от Бертло провел также датский химик Ханс Петер Юрген Юлиус Томсен (1826—1909). [c.109]

    Работа Уильямсона ознаменовала начало изучения химической кинетики — области химии, изучающей скорости химических реакций. Уильямсон ясно показал, что самопроизвольный характер хилшческой реакции в ряде случаев определяет не просто выделение теплоты, а нечто большее. Проводя свои [ногочисленные калориметрические измерения, Бертло и Томсен уже выявили это нечто большее , но, к сожалению, вопрос остался нерешенным из-за того, что работы Томсена были опубликованы на малодоступном ученым норвежском языке. [c.111]

    Данные по теплообмену в зернистом слое при Кбэ = 0,05—10 и Рг 1 собраны в работе [118] на рис. IV. 20 они показаны в виде области экспериментальных точек. Большинство из них получено по результатам измерений Ь методом создания встречных одномерных потоков газа и теплоты [29]. Отличие полученных значений кг отХоэ при Неэ < 1 интерпретируется как результат влияния межфазного теплообмена, и на основе видимых значений ./ определяются коэффициенты теплоотдачи. В работе [119] определяли поля температур на выходе из трубы с зернистым слоем, обогреваемой паром. Коэффициенты теплоотдачи находили путем сравнения этих полей с [c.161]

    Как было найдено в более поздней работе Кистяковского с сотрудни-калп [20], теплота гидрхгровання этилеиа, измеренная Вартенбергом и Краузе [19], неверна. [c.112]

    Однако результаты подобного рода расчетов в большинстве случаен весьма разноречивы и плохо согласуются с имеющимися экспериментальными данными. Объясняется это тем, что, как известно, реакции изомеризации, по сравнению с многими другими химическими реакциями, сопровождаются небольшим тепловым эффектом. Поэтому в тех случаях, когда тепловой эффект приходится рассчитывать на основании термохимических данных (например, теплот сгорания или образования из элементов), незначительные погрешности, допущенные нри измерении теплот сгорания, вызывают большие ошибки при вычислении теплового эффекта реакции и тем самым понижают достоиер1гость окончательных результатов расчета. [c.300]

    Эти соединения имеют характер твердых растворов. Твердые растворы замещения образуются в основном веществами со сходными структурами (подобно жидкостям) твердые растворы внедрения могут быть образованы соединениями с самыми различными структурами. В таких соединениях энергии связей обусловлены, в основном, силами Ван-дер-Ваальса. Поскольку эти силы действуют в направлениях, где находятся элементы кристаллической решетки, результирующая энергия, приходящаяся на 1 тиоль вещества, может быть довольно значительной. Калориметрическими измерениями была установлена зависимость между теплотой образования соединений включения и степенью заполнения пустот кристаллической решетки. [c.77]

    Константы равновесия реакции изомеризации аллена в метилацетилен (пронин) рассчитаны Франк-Каменецким и Маркович статистическим лютодом, исходя из теплот гидрирования, измеренных калориметрически, и частот колебаний из анализа рамановских и инфракрасных спектров (табл. 26). [c.317]

    Измерения теплот адсорбции кислорода на поверхности МПО2 дают значение q = 18-19 ккал/г-атом независимо от величины Qg [1.7]. Аналогичный результат получен для СиО q = 34 ккал/г-атом для Qq = 0 43% [1.12]. [c.9]

    Некоторые другие теории адсорбции также применялись для изучения кинетики реакций. Брунауэр, Эмметт и Теллер расширили теорию Лэнгмюра, и их уравнение, часто обозначаемое как уравнение БЭТ, нашло широкое применение для измерения поверхности твердых частиц (см. пример УИ-1). Хорошо известное уравнение изотермы Фрейндлиха приводит к очень простым и часто используемым уравнениям скорости (см. стр. 224). Весьма полезное уравнение, описывающее кинетику синтеза аммиака, предложено Темкиным и Пыжовым . Эти исследователи применили уравнение адсорбции, отличающееся от уравнения Лэнгмюра тем, что при его выводе учтена неоднородность поверхности, а также принято, что теплота адсорбции линейно уменьшается с увеличением степени насыщения поверхности. Уравнение Темкина и Пыжова приведено в задаче УП-9 (стр. 237). [c.208]

    Число проделанных опытных измерений констант равновесия реакций углеводородов очень невелико. Измерение теплоты реакции обычно сводится к измерению теплоты сгорания, определяемой, как правило, при комнатной температуре. Тем не менее сочетание этих довольно ограниченных характеристик реакции с термодинамическими свойствами индивидуальных соединений, участвующих в реакции, позволяет расчитать и АН° при [c.359]

    Сушествуют также методы измерения удельной поверхности катализаторов, основанные на адсорбции из жидкой фазы, например, чистого вещества или двухком-понентиого раствора. В случае применения в качестве адсорбата индивидуальной жидкости удельную поверхность вычисляют по количеству выделяющейся теплоты смачивания, а в случае адсорбции компонентов растворов— ио уменьшению концентрации наиболее сильно адсорбирующегося компонента. [c.86]

    Разработка методов экспериментального определения теплот химических реакций, теплот фазовых превращений, теплот растворения и теплоемкостей, л также измерение этих величин составляет содержание калориметрии. Прямое экспериментальное определение теплоты процесса (если оно возможно) является, как правило, наиболее точным методом нахождения этой важной величины Ниже дается краткая характеристика основных калориметрическах методик Основной частью калориметрической установки является калориметр. Типы и формы калориметров разнообразны. В простейшем случае калориметр представляет собой сосуд, наполненный калориметрической жидкостью с известной теплоемкостью и окруженный мало проводящей теплоту оболочкой (вместо сосуда с жидкостью может применяться массивное металлическое тела). Изучаемый процесс проводится так, чтобы теплота процесса по возможности оыстро и полностью отдавалась калориметру (или отнималась от него) основной измеряемой величиной является изменение температуры калориметра Т. Зная теплоемкость калориметрической системы, т. е. совокупности всех дастей калориметра, между которыми распределяется поглощаемая теплота [c.75]

    Определив с помощью калориметрических измерений или из изостер зависимость дифференциальной теплоты адсорбции от величины адсорбции Г2 или заполнеегия поверхиости в (рис, XVII, 13, кривая 2) и определив из одной изотермы адсорбции зависимость дифференциальной работы адсорбции от 9 (рис. XVII, 15, кривая /), можно найти соответствующую зависимость для дифференциальной энтропии адсорбции  [c.486]

    В среднем адсорбционный потенциал аргона в положении равновесия составляетЪколо 2,2 ккал/мо.гь. Измерения теплот адсорбции для О- О дали"(2д=2,2—2,6 ккал/моль. Таким образом, приближенный расчет приводит к величине адсорбционного потенциала, близкой к найденной на опыте величине теплоты адсорбции аргона. [c.492]


Смотреть страницы где упоминается термин Теплота, измерение: [c.194]    [c.50]    [c.54]    [c.516]    [c.60]    [c.349]    [c.225]    [c.394]    [c.365]   
Химический энциклопедический словарь (1983) -- [ c.235 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.235 ]




ПОИСК







© 2025 chem21.info Реклама на сайте