Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жидкостная хроматография при высоких давлениях детекторы

    В качестве неподвижной фазы (НФ) применяются мелкопористые инертные носители, покрытые пленкой различных полимеров, нерастворимых в органических растворителях . Заполнение колонок (их диаметр 0,5—50 мм) неподвижной фазой проводят под давлением в 150—300 атм, благодаря чему добиваются высокой однородности и плотности заполнения и, следовательно, эффективности разделения. Элюирование разделяемых веществ осуществляется пропусканием через колонку какого-либо подходящего органического растворителя или их смеси под давлением в 50—200 атм. При этом режим термостатирования и состав элюирующей смеси могут изменяться в ходе анализа в соответствии с заданной программой. Для непрерывного определения состава выходящей из колонки смеси применяются детекторы, реагирующие на изменение показателя преломления (интерферометры), теплоты адсорбции, ультрафиолетового поглощения, сигнал которых регистрируется автоматическим потенциометром. Метод жидкостной хроматографии высокого давления [c.135]


    Благодаря внедрению новой техники, основанной на использовании сдвоенных колонок, а также совершенствованию приборного обеспечения, сверхкритическая хроматография (СКХ) переходит сейчас в разряд рутинных методов анализа, обладающих существенными преимуществами перед традиционной жидкостной хроматографией высокого давления в плане эффективности разделения и экспрессности. Более того, это метод не требует применения экзотических детекторов разделяемые компоненты можно регистрировать с помощью таких стандартных детекторов для газовой хроматографии, как ТИД и ЭЗД. [c.220]

    Приведенные в этой главе хроматограммы показывают, что время, требуемое для разделения компонентов нуклеиновых кислот и жидкостей человеческого организма, может быть значительно снижено, если используется жидкостная хроматография высокого давления с высокоэффективными хроматографическими колонками и чувствительными УФ-детекторами. [c.313]

    Важнейшие конструкционные особенности приборов жидкостной хроматографии высокого давления суммированы ниже. Очень часто, так же как в других хроматографических методах, выбор дозируемого объема, геометрии колонки, насадки хроматографической колонки, подвижной фазы и детектора зависит от стоящих перед исследователем задач. Поэтому здесь даны только общие черты метода. [c.147]

    В настоящее время колоночная хроматография вновь приобретает свое прежнее значение благодаря применению новых, более совершенных детекторов и методов жидкостной хроматографии под высоким давлением [20]. Этому способствовало также развитие теории газовой хроматографии и заимствование уже разработанных приемов из других методов. [c.354]

    Хроматография. В концентрате обнаружены органические примеси, которые отделяли с помощью жидкостной хроматографии высокого давления — ЖХВД. Главный компонент системы ЖХВД (рис. 11.1)—колонка из нержавеющей стали 316, 1,5X2,2—3,0 мм, заполненная сильноосновной анионообменной смолой (Bio-Rad Aminex А-27, номинальный диаметр 8—12 мкм). В качестве элюента использовали аммиачно-ацетатный раствор (рН=4,4), в котором концентрация ацетата возрастала от 0,015 до 6,0 М за период от 24 до 36 ч при скорости потока 10 мл/ч. Выделенные вещества обнаруживали но поглощению УФ-лучей с длиной волн 254 и 280 нм и собирали в виде фракций для последующей идентификации и определения свойств. Можно использовать и другие методы детектирования, например, смешать элюент с сернокислым раствором Се , а затем измерить флуоресценцию Се" (см. рис. 11.1.). Цериевый окислительный детектор указывает на присутствие окисляемых веществ [4]. В экспериментах с радиоактивными метками меченые компоненты обнаруживали при помощи автоматического контроля за радиоактивностью элюата [12]. [c.130]


    Большую роль в повышении эффективности фракционирования слоншых смесей сыграло создание жидкостной хроматографии высокого давления (ЖХВД). Высокая скорость разделения, возмож ность реализации любого из отмеченных выше механизмов сорбции, применимость для разделения любых растворимых в элюенте соединений, независимо от их молекулярной массы, возможность непрерывного контроля элюирования с помош ью высокочувствительных детекторов, управления процессом разделения путем программирования температуры, скорости потока и состава элю-ента, автоматическая регистрация результатов обеспетали широчайшее распространение ШХВД для решения препаративных задач, количественного анализа и идентификации компонентов анализируемых смесей [109, 111, 122 и др.]. [c.17]

    Современная высокоэффективная жидкостная хроматография. ВЭЖХ (жидкостная хроматография высокого давления, скоростная жидкостная хроматография) начала развиваться в начале 70-х годов. Разработка нового метода обусловливалась, во-первых, необходимостью анализа высококипящих (>400 °С) или неустойчивых соединений, которые не разделяются методом газовой хроматографии, во-вторых, необходимостью увеличить скорость разделения и повысить эффективность метода колоночной жидкостной хроматографии. Для этого применили колонки с малым внутренним диаметром (2—6 мм) для ускорения массообмена уменьшили диаметр частпц сорбента (5— 50 мкм), что, в свою очередь, привело к необходимости увеличить давление на входе колонки до 0,5—40 МПа. Выпускаемые промышленностью жидкостные хроматографы снабжены высокочувствительными детекторами, позволяюш,ими определять до 10 —10" ° г вещества. Достаточно высокая скорость анализа, низкий предел обнаружения, высокая эффективность колонки, возможность определять любые вещества (кроме газов) привели к быстрому развитию ВЭЖХ. [c.203]

    ВЭЖХ1 Высокоэффективный жидкостной хроматограф для определения микотоксинов и полиароматических соединений. Включает изократический насос высокого давления, ручной инжектор, флуоресцентный детектор, программное обеспечение, компьютер, принтер, комплект расходных материалов и принадлежностей. Система легко дооснащается до градиентной схемы со смешиванием до 4-х растворителей система обработки данных позволяет снимать данные с двух детекторов одновременно GB , Австралия [c.548]

    Скорости подвижной фазы в традиционной колоночной жидкостной хроматографии обычно. цовольно низки по сравнению, например, со скоростями в газовой хроматографии, так как диффузия молекул разделяемых веществ в стационарной фазе жидкостной хроматографии происходит относительно медленно. Это связано с тем, что в традиционной жидкостной хроматографии стационарная фаза применяется в форме довольно крупных частиц относительно большого размера (примерно той же величины, что и в газовой хроматографии). Для того чтобы увеличить скорость диффузии молекул пробы в неподвижной фазе, в жидкостной хроматографии высокого разрешения применяются частицы очень малого размера. Малые размеры таких мелких частиц создают определенные затруднения для того чтобы продавить подвижную фазу через колонку, плотно заполненную очень мелкими частицами, требуется давление, намного превышающее атмосферное. Начиная с 1968 г. это направление хроматографии развивалось очень быстро. Для нагнетания подвижной жидкой фазы в колонки, заполненные очень мелкими частицами, применяются насосы, развивающие давление в сотни килограммов на квадратный сантиметр. Величина частиц современных адсорбентов составляет всего несколько микрометров. Разработаны специальные неподвижные фазы, имеющие непроницаемую для жидкости твердую сердцевину, что ограничивает диффузию органических соединений только поверхностным слоем адсорбента. Это облегчает элюирование разделяемых веществ. Обычно в жидкостной хроматографии высокого давления применяют детекторы, регистрирующие элюируемые из колонки вещества по изменению показателя преломления, по поглощению УФ-света и по возникновению флуоресценции. Это экспериментальное направление развивалось очень быстро, и сейчас этот высокоэффективный метод разделения стал доступен химикам-органикам. [c.447]

    Гибридный хромато-атомно-абсорбционный метод использован также для раздельного определения алкильных и арильных соединений цинка в смазочных маслах [395]. Связаны жидкостный хроматограф высокого давления Перкин-Элмер , модель 601 с пламенным атомно-абсорбционным СФМ Перкин-Элмер , модель 603 Длина колонки 25 см, давление элюента 14 МПа, скорость потока жидкости 4 мл/мин. Пробу растворяют в дн-хлорметане, в качестве элюента используют метанольно-водную смесь (50—100%). Разделение длится 10 мин. Элюат проходит через ультрафиолетовый детектор, затем поступает распылитель СФМ. Используют ацетилено-воздушное пламя, аналитическая линия 2п 213,9 нм. При атомно-абсорбционном детектировании получают более сильные и четкие сигналы, значительно меньше помех, чем при ультрафиолетовом детектировании. В этой же работе кратко описаны гибридные методы определения ртути, селена, хрома и меди в сточных водах, растительных и клинических материалах. [c.275]


    ВЭЖХЗ Многоцелевой высокоэффективный жидкостной хроматограф. Включает градиентный насос высокого давления для смешивания до 4-х растворителей, проточный вакуумный дегазатор, ручной инжектор, спектрофотометрический и флуоресцентный детекторы, программное обеспечение, компьютер, принтер, ком-пле сг расходных материалов и принадлежностей. Дополнительно система может оснащаться автоматическим дозатором на 160 проб с возможностью предколоночной химии, разбавления, экстракции и добавления стандарта, а также различными вариантами термостатов для колонок и кранов GB , Австралия [c.548]

    В полевых условиях для таких анализов удобен портативный отечественный жидкостный хроматограф Минихром (рис. 11.9). Он представляет собой градиентный жидкостный хроматограф высокого давления с УФ-детектором. На рис. 11.10 представлена хроматограмма летучих карбонильных соединений (альдегиды С]—Сц), обнаруженных в городском воздухе. Найденные содержания альдегидов лежат в интервале 1—10 ppb. [c.149]

    Жидко-жидкостная хроматография, называемая также распределительной хроматографией, получила признание как эффективный метод высокоразрешимого разделения с 1941 г., т. е. с того момента, когда она была предложена Мартином и Сингом [1]. Однако для аналитических целей этот метод применяется реже, чем новейшие методы газовой или тонкослойной хроматографии. В последнее время, после того, как была усовершенствована методика изготовления колонок и разработана лучшая аппаратура, интерес к этому методу возродился. Теоретические разработки, создание специализированных насадок, чувствительных детекторов, воспроизводимых насосных систем —все это делает высокоскоростную жидко-жидкостную хроматографию высокого давления практическим методом разделения. [c.123]

    Lawren e J.F.-J. hromatogr.S i., 1976,14,№12,557-559 РЖХим,1977,I5P44. Сравнение газо-жидкостной хроматографии с детектором по захвату электронов, газо-жидкостной хроматографии с детектором по электропроводности а жидкостной хроматографии высокого давления с УФ-детектированием для определения некоторых гербицидов в пищевых продуктах. [c.152]

    В жидкостной хроматографии высокого давления элюент подают в колонку с помощью насосов. Пульсации при работе насосов могут вызвать ложный сигнал детектора и ухудшить эффективность разделения колонки. Влияние пульсаций можно свести к минимуму, включив в с з1ему большие демпферные сосуды. Джентофт и Гоу [19] описывают систему, в которой элюент подается без пульсаций под высоким давлением. [c.552]

    Высокозс фективнап жидкостная хроматография. Главным достоинством высокоразрешающей жидкостной хроматографии под давлением является быстрота процесса очистки (несколько минут вместо нескольких недель), а слабое место этого метода — в недостаточно высокой чувствительности применяемых детекторов (рефрактометрического, УФ и с переменной длиной волны). Как правило, феромон не может быть детектирован с помощью этих детекторов, но могут быть детектированы сопутствующие ему вещества, которых всегда много в биоматериале и которые могут служить маркерами феромона. Тем не менее удобство оперирования, высокая скорость и высокая разрешающая способность ставят ее в один ряд с ГЖХ, оставляя за собой (в сравнении с ГЖХ) такое преимущество, как оперирование при комнатной температуре. [c.22]

    Благодаря высокой чувствительности детекторов, применяемых в современных жидкостных хроматографах, для анализа достаточно нескольких микролитров вещества. Разделение осуществляется в короткие промежутки времени за счет использования колонок малых размеров и высоких скоростей элюирования (давления на входе в колонку до нескольких сотен атмосфер). При применении некоторых типов детекторов (спектрофотометрических, транспортных и др.) можно управлять ходом разделения путем регулируемого изменения температуры, давления или состава элюента в ходе анализа. Программируемое изменение состава элюента (градиентное элюирование) плодотворно реализовано, например, в уже отмечавшейся методике ЛЭАХ [123, 124] (см. рис. 1.1). На применении транспортного детектора и смеси трех растворителей в качестве подвижной фазы основан способ [c.33]

    Осн. части жидкостного хроматографа — насос высокого давления, система введения пробы, хроматографич. колонка, детектор, интегратор и самописец (нли спец. ЭВМ). В зависимости от природы разделяемых в-в, их концентраций и состава элюента испольэ. разл. детекторы ультрафиолетовый с переменной или постоянной (обычно 254 нм) длиной волны, рефрактометрический и флуориметриче-скай, реже — пламенно-ионизационный, инфракрасный, полярографический и др. Макс. чувствительность детектора сильно зависит от природы анализируемых в-в и составляет 10 — 10"г/см . [c.204]

    Тонкослойная хроматография (ТСХ английское TL ) и предшествовавший ей метод хродгатографии на бумаге до середины 70-х годов занимали центральное место в исследованиях структуры белков и нуклеиновых кислот. В последнее десятилетие эти методы были явно оттеснены электрофорезом и высокоэффективной жидкостной колоночной хроматографией при высоком давлении. Оба метода превосходят ТСХ но разрешающей способности, а второй из них — и по скорости анализа. Кроме того, в результате ЖХВД экспериментатор получает уже разделенные жидкие фракции исходного препарата, в то время как после ТСХ ему надо еш,е локализовать пятна на пластинке, а в случае необходимости дальнейшего анализа — выполнить длительные операции элюции из них веш,ества. Точное и проводимое в ходе самого фракционирования определение микроколичеств вещества во фракциях прп ЖХВД, которое позволяют осуществить высокочувствительные детекторы и интегрирующие устройства современных жидкостных хроматографов, оставляет далеко позади соответствующие возможности ТСХ — ввиду плохой воспроизводимости процессов элюции из пятен и высокого уровня фона или самопоглощения в слое носителя при использовании оптических, флюоресцентных и радиоактивных методов оценки количества вещества в пятнах на пластинке без его элюции. Наконец, в препаративном варианте фракционирования количественные возможности ТСХ на несколько порядков меньше, чем у обычной колоночной хроматографии и даже у электрофореза. [c.457]

    Рассматривая размывание в колонке, мы указывали, что эффективность колонки (ВЭТТ) зависит от размера частиц сорбента. В большой степени бурное развитие ВЭЖХ за передние 10-12 лет было обусловлено, во-первых, разработкой способов получения сорбентов с размером частиц от 3 до 10 мкм и с узким фракционным составом, обеспечивающих высокую эффективность при хорошей проницаемости, во-вторых, разработкой способов заполнения этими сорбентами колонок и, в-третьих, разработкой и серийным выпуском жидкостных хроматографов, имеющих рассчитанные на высокие давления насосы, инжекторы и детекторы с кюветами малого объема, способные регистрировать пики малого объема. [c.13]

    Аппаратура. Совр жидкостной хроматограф включает емкости для элюентов, насосы высокого давления, дозатор, хроматографич колонку, детектор, регистрирующий прибор, систему управления и мат обработки результатов Элюенты подаются в насос через фильтр, задерживающий пылевые частицы (больше 0,2 мкм), иногда через элюенты пропускают небольшой ток гелия для удаления растворенного воздуха и предотвращения образования пузырьков в детекторе (особенно в случае водньи н полярных элюентов) В аналит хроматографах для подачи элюента в колонку используют поршневые насосы с системой обратной связи, позволяющие сглаживать пульсацию потока в пределах [c.153]

    Ясно, что одним из наиболее важных факторов, определяющих возможности всего жидкостного хроматографа, является качество насоса. Для жидкостиой хроматографии высокого разрешения необходим иасос, который может продвигать подвижную фазу через длинные колонки малого диаметра, заполненные плотно упакованными очень мелкими частицами. Кроме того, важно, чтобы возникающие при работе иасоса импульсы давления были бы сведены к минимуму, так как такие импульсы вызывают появление градиентов концентрации пробы, что приводит к нарушению работы автоматических детектирующих устройств. В особой степени это проявляется при работе с рефрактометрическим детектором. Для аналитической работы необходимы скорости подвижной фазы около [c.451]

    ВЭЖХ2 Многоцелевой высокоэффективный жидкостной хроматограф. Включает изократический насос высокого давления, ручной инжектор, спектрофотометрический и флуоресцентный детекторы, программное обеспечение, компьютер, принтер, комплект расходных материалов и принадлежностей. Система легко дооснащается до градиентной схемы со смешиванием до 4-х растворителей GB , Авс1ралия [c.548]

    Весьма важный узел жидкостного хроматографа представляет собой система подготовки и подачи элюента. В нее входят резервуар с элюентом, где должна быть предусмотрена возможность дегазации растворителя (в вакууме, при нагревании или ультразвуком), а также соответствующие фильтры для удаления воды и взвещенных твердых частиц из органических растворителей. Система подачи элюента должна обеспечить, во-первых, беснульсацион-ный поток жидкости через колонку и детектор. Пульсация или монотонное изменение скорости потока элюента приводит к невоспроизводимости удерживаемых объемов, что, в свою очередь, затрудняет качественный и количественный анализ. Кроме того, пульсация потока элюента искажает работу детектирующих систем, это также отражается на погрешности измерений и чувствительности анализа. Система подачи элюента должна обеспечить, во-вторых, возможность изменения в сравнительно широком диапазоне скоростей потока (в пределах двух порядков) в-третьих, возможность работы при высоких давлениях, необходимых для сокращения времени разделения, и, в-четвертых, возможность работы в режиме градиентного элюирования. [c.316]


Смотреть страницы где упоминается термин Жидкостная хроматография при высоких давлениях детекторы: [c.100]    [c.108]    [c.121]    [c.108]    [c.104]    [c.488]    [c.231]    [c.16]    [c.213]    [c.291]    [c.482]    [c.118]    [c.118]    [c.94]    [c.13]    [c.329]    [c.123]    [c.450]    [c.54]   
Аналитическая химия синтетических красителей (1979) -- [ c.109 ]




ПОИСК





Смотрите так же термины и статьи:

Детектор для жидкостной хроматографи

Жидкостная хроматография детекторы

Жидкостная хроматография при высоком давлении

Жидкостная хроматография хроматографы

Хроматография жидкостная

Хроматография жидкостно-жидкостная

Хроматографы жидкостные



© 2025 chem21.info Реклама на сайте