Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ударопрочный полистирол свойства

    Таким образом были получены соединения с новыми свойствами, Так, к полиэтилену были привиты боковые ветви полистирола. Для проведения блокполимеризации молекулы двух различных полимеров разрываются на короткие цепи (например, при вальцевании, экструзии), затем полученные блоки связываются , образуя полимер, в котором чередуются куски или блоки первого А и второго В соединений. Так, например, при взаимодействии каучука с эпоксидными смолами получается полимер, обладающий исключительной стойкостью к истиранию. Таким же способом из каучука и полистирола образуется ударопрочный полистирол, в который можно вбивать гвозди, не боясь растрескивания. Блокполимеризация может быть также осуществлена взаимодействием концевых функциональных групп полимеров или присоединением друг к другу макромолекул разных полимеров  [c.191]


    Физико-механические, теплофизические и электрические свойства ударопрочного полистирола [c.92]

Таблица 2. Свойства основных марок ударопрочного полистирола Таблица 2. <a href="/info/2992">Свойства основных</a> марок ударопрочного полистирола
    Свойства ударопрочного полистирола и сополимеров [c.24]

    Ударопрочный полистирол в настоящее время в основном получают методом полимеризации стирольного раствора каучука. Вначале проводят форполимеризацию стирольного раствора в массе при перемешивании до степени конверсии 12—40%. Затем полимеризацию завершают либо в массе без перемешивания, либо в водной суспензии с перемешиванием. Интенсивность перемешивания в процессе форполимеризации оказывает решающее влияние на свойства конечного продукта [5, 6]. Проведение процесса при высокой скорости перемешивания приводит к образованию продукта с низким содержанием гель-фракции и с малыми размерами частиц каучука. При снижении скорости перемешивания возрастает содержание гель-фракции и увеличиваются размеры частиц каучука. Размеры частиц и содержание гель-фракции являются двумя важнейшими структурными параметрами, определяющими физические свойства ударопрочного полистирола. [c.252]

    Сам ПО себе полиакрилонитрил не представляет большого интереса. Необходимость улучшения свойств полистирола, прежде всего повышения атмосферостойкости, стойкости к растворителям и ударной вязкости, привело к созданию ударопрочного полистирола — сополимеров на основе акрилонитрила, бутадиена и стирола (АБС) [160], стирола и акрилонитрила (САН), значение которых постоянно растет. [c.135]

    Свойства ударопрочного полистирола зависят от соотношения стирола и каучука, условий получения, а также количества и природы различных добавок (пластификатора, стабилизатора, регулятора моле- [c.20]

    Ударопрочный полистирол и ударопрочные сополимеры характеризуются комплексом ценных свойств, обусловленных свойствами компонентов, входящих в их состав. [c.24]

    К привитым сополимерам стирола относятся такие материалы, как ударопрочный полистирол, АБС-пластики и прозрачные МБС-пластики. Наибольшее распространение получили ударопрочный полистирол и АБС-пластики благодаря уникальному сочетанию таких эксплуатационных свойств, как жесткость, высокая ударная вязкость, прочность, формуемость, химическая стойкость (для АБС-пластиков). [c.159]


    Сополимеризация существенно увеличила полезность многих гомополимеров хорошим примером является так называемый ударопрочный полистирол, представляющий собой полимер стирола с бутадиеном, обладающий высокой ударной вязкостью. Существенно отметить, что свойства сополимеров и тер полимеров отличаются от свойств механических смесей, полученных смешением гомополимеров. [c.38]

    Полимер можно измельчать, предварительно охладив ампулы (блоки) в жидком азоте. Литье под давлением ударопрочного полистирола осуществляют при температуре в цилиндре 200° С и в форме 40—45° С. Определяют физико-механические свойства (см. стр. 238). [c.210]

    Министерством здравоохранения СССР разрешен к применению ряд синтетических полимеров в качестве материалов тары. Из них наибольшее применение находят полиэтилен высокого и низкого давления, смесь полиэтилена высокого давления с полиизобутиленом, поливинилхлорид, полипропилен, ударопрочный полистирол, поликарбонат. В фармацевтической практик используют, как правило, нестабилизированные полимерны материалы, поскольку стабилизаторы (а также в ряде случаев катализаторы, пластификаторы и красители), добавляемые к полимерам для придания им определенных свойств и предотвращения старения, обладают, как правило, высокой химической активностью и токсичны. В связи с этим полимерные упаковки в чистом виде для лекарств следует оберегать от прямого солнечного света, длительного нагревания, бактерицидного-облучения. [c.80]

    Оценивая эти материалы со стороны химической стойкости предпочтение следовало бы отдавать тем сополимерам, в которых содержание бутадиена или изопрена наименьшее, поскольку непредельность, а следовательно, и способность противостоять действию атмосферы и химикалий зависят именно от этого показателя. Однако термоэластопласты с малым содержанием полибутадиеновых блоков практически лишены каучукоподобных свойств и сходны с ударопрочным полистиролом. Между тем, наиболее распространенные и подробно изученные [c.25]

    Пром-сть выпускает многослойные пленки, различные слои к-рых состоят из полистирола общего назначения, ударопрочного полистирола, сополимеров стирола и полимеров на основе производных стирола, а также разноцветные П.п. (напр., трехслойную пленку для молочной тары, внешние слои к-рой окрашены в белый цвет, а внутренний — в черный такая пленка обеспечивает качественную защиту молока от УФ-излучения и придает изделию привлекательный внешний вид). Многослойные П. п. обладают жесткостью, термостабильностью, повышенной стойкостью к действию масел и жиров, низкой газопроницаемостью, светозащитными свойствами. П.п. этого типа находят применение гл. обр. для упаковки пищевых и фармацевтич. продуктов, выдерживающей нагрев ИК-лучами и токами сверхвысокой частоты. Упаковка на основе многослойных П.п. не боится сдавливания и удобна при складировании. Из пенополистирольной пленки изготовляют посуду одноразового пользования, технич. упаковку в последнем случае применяют обычно пленку, кашированную с обеих сторон (напр., бумагой). Обширная область применения таких пленок — строительство (напр., для декоративной отделки, внутренней и внешней изоляции). [c.23]

    Бурное развитие промышленного производства ударопрочного полистирола побудило многих специалистов заняться изучением особенностей его синтеза с целью повышения эффективности использования каучука, оптимизации условий проведения процесса, улучшения свойств получаемого полимера. За последние годы опубликовано свыше 500 работ и ряд монографий, посвященных процессу получения ударопрочного полистирола [276—279]. Однако до настоящего времени нет строгой количественной теории процесса образования ударопрочного полистирола в целом и не совсем ясна физическая картина отдельных стадий формирования его микрогетерогенной структуры. [c.159]

    Дальнейшее совершенствование технологии гальванической металлизации и разработка более дешевых марок пластмасс будут способствовать внедрению этого процесса в различные области промышленности. Весьма перспективным материалом для металлизации является ударопрочный полистирол, который по своим свойствам близок к АБС-сополимерам. В результате многолетних опытов был найден состав растворов для гальванической металлизации этого материала. Величина адгезии металлического покрытия к пластику составляет 1—4 кгс/25 мм, т. е. достаточна для многих областей применения. [c.180]

    ТАБЛИЦА 5.5. Физико-механические свойства ударопрочного полистирола, полученного на полифункциональных пероксидных инициаторах [28] [c.140]

    ТАБЛИЦА 7.1. физико-механические свойства ударопрочного полистирола, полученного различными методами синтеза [c.158]

    В случае синтеза ударопрочного полистирола недостатком суспензионного метода является низкая интенсивность перемешивания внутри диспергированной каучуковой фазы, что сказывается на структуре и свойствах конечного продукта. Этого недостатка [c.174]

    Сополимер стирола с акрилонитрилом обладает повышенной прочностью и теплостойкостью. При совмещении этого сополимера с каучуками получают- пластик с повышенными механическими свойствами (ударопрочный полистирол). [c.270]


    В н астоящее время созданы многочисленные модификации классических систем, обладающие различными специфическими свойствами. Так, замена стирола на винилтолуол при синтезе ударопрочного полистирола приводит к получению теплостойкой марки— ударопрочного поливинилтолуола. Замена акрилонитрила на метилметакрилат в АБС-пластиках позволяет получать прозрачные материалы с комплексом хороших физико-механических свойств. Разработан ряд ударопрочных материалов, включающих четыре и более компонентов, однако их удельный вес сравнительно невелик. [c.63]

    Ценными свойствами обладают трубы из сополимера винилхлорида с винилидеихлоридом, выпускаемые под маркой саран и широко применяемые на химических заводах США. Для транспортировки солевых растворов и сырой нефти используются трубы из ацетнлбутнратцеллю-лозы.. Из ударопрочного полистирола (сополимера стирола сакрилонит-рильным каучуком) изготовляют фитинги и в небольших количествах трубы. Другие пластики—полиэтилентерефталат, полиамиды еще в мень-И1ей мере используются для изготовления трубопроводов. Для перекачки агрессивных жидкостей прп повышенных давлениях и температурах применяют стальные трубы с внутренней футеровкой их пластиками, стойкими против коррозии. [c.220]

    Выпускается также ударопрочный полистирол, получаемый прививкой стирола на синтетический бутядиенстирольный каучук. При прививке стирола на каучук особенно резко повышается прочность к удару. Так, ударная вязкость получаемого материал1а в 4—5 раз выше, чем у блочного полистирола. Привитой сополимер также отличается большой прочностью при статическом изгибе, хорошими диэлектрическими свойствами, высокой стойкостью к неорганическим кислотам, щелочам, вла-ге. Благодаря таким ценным техническим свойствам ударопрочный полистирол находит самое различное применение, в частности, при изготовлении деталей холодильников, в радиотехнической промышленности, автомобилестроении и др. [c.209]

    Показатели свойств при растяжении и изгибе, ударопрочность композиций оказались такими же, как у сополимеров АБС и ударопрочного полистирола. Оптические свойства близки к свойствам полиметилметакрилата. Показатели прочностных свойств ниже, чем у прозрачных модифицированных диеновых полимерных смесей [3], в то время как оптические свойства одинаковы, а светоцропускание даже немного выше. [c.178]

    Зависимость механич. свойств смеси от размера частиц изучена слабо. Установлено только, что прочность смеси мало изменяется при изменении размера частиц в пределах от 1 до 50 мкм. По-разному влияет на свойства смесей и анизометричность частиц дисперсной фазы. Обычно в смеси полимеров, снятой с вальцев или с экструдера, прочность в направлении ориентации иа 20—100% выше, чем в перпендикулярном направлении. Анизометричные частицы каучука в смесях с поливинилхлоридом обеспечивают более высокую ударную прочность, чем сферические. Однако существуют и др. двухфазные системы, напр, ударопрочный полистирол, в к-рых ударная вязкость после экструзии в результате ориентации частиц каучука снижается. [c.219]

    На практике полимерные материалы считаются хрупкими, если они проявляют X, при комнатной темп-ре и времени нагружения не боле< нескольких сок. Применение хрупких полимерных материалов возможно в исключительных случаях, если они обладают какими-либо ценными немеханич, свойствами. Для снижения X, такие материалы часто модифицируют введением каучуков (ударопрочный полистирол — см. Стирола сополимеры, фенольно-каучуковые композиции), При конструировании изделий из хрупких полимерных матерналов важен выбор фо 1мы изделия, при к-рой в ном не возникают локальные юнцентрации напряжения, приводящие к растрескиванию, Воздейст- [c.424]

    Кроме того, выпускается большое количество разнообразных сополимеров — это весьма распространенный подход — модифицировать химическое строение полимера ради получения желаемого набора свойств. Другой подход заключается в использовании смесей полимеров, сочетание которых обладает нужными свойствами. Ударопрочный полистирол (УППС) представляет собой частично сополимер, а частично смесь полибутадиена и ПС. [c.241]

    Пластики на основе полистирола формуются много легче, чем из винипласта, их диэлектрич. свойства близки к свойствам полиэтиленовых П. м., они оптически прозрачны и по прочности к статич. нагрузкам мало уступают винипласту, но более хрупки, менее устойчивы к действию растворителей и горючи. Низкая ударная вязкость (10—12 кдж1м , или кг-с.ч см ) и разрушение вследствие быстрого прорастания мтп<ро-трещин устраняются при наполнении полистирольных пластиков полимерами или сополимерами с темп-рой стеклования ниже —40 °С. Эластифицированный (ударопрочный) полистирол наиболее высокого качества получают полимеризацией стирола на частицах латекса из сополимеров бутадиена со стиролом или с акрилонитрилом. Материал, названный АБС (см. Стирола сополимеры), содержит около 15% гель-фракции, состоящей из блок- и привитых сополимеров полистирола и указанного сополимера бутадиена, эластифицирую- [c.316]

    Векелит ТНД-9020 — марка ударопрочного полистирола, имеющего высокую прочность при низких температурах (—29°С). Его прочность в 2 раза превышает прочность обычного ударопрочного полистирола Описаны свойства и переработка новых суперпрочмых к удару полистиролов, вьшускае- [c.334]

    Существенным недостатком Г1С является его повышенная хрупкость и низкая ударная прочность, что не позволяет использовать этот полимер в чистом виде для производства тары. Различные приемы модификации позволяют в значительной мере устранять его недостатки и получать композиции на основе ПС с комплексом свойств, отвечающим требованиям к тароупакоБОчным материалам (например, ударопрочный полистирол). [c.23]

    В табл. 5.5 приведены свойства ударопрочного полистирола, полученного при использовании полипероксидов. Применение этих инициаторов позволяет не только форсировать процесс, но также улучшить свойства образующегося продукта улучшается ударная вязкость при сохранении перерабатываемости, увеличиваются молекулярная масса и относительное удлинение. При этом, как видно из рис. 5.8, удается улучшить управляемость процессом и его технологичность, несмотря на его сложный гетерогенный характер. [c.140]

    В ряде работ [302—305] показано, что молекулярная масса и ММР полистирольной матрицы и привитого полистирола определяют морфологию образующегося ударопрочного полистирола и, следовательно, его эксплуатационные свойства. Так, уширение ММР полистирольной матрицы за счет низкомолекулярных фракций (менее 100 000) приводит к падению значений относительного удлинения и ударной вязкости [303]. Уменьшение Молекулярной массы привитых цепей полистирола может играть существенную роль в снижении стабильности системы на стадии форполимериза-ции и приводить к изменению морфологии диспергированных частиц каучука. [c.165]

    Реакции сшивания каучуковой фазы оказывают существенное влияние на морфологию полимера, его реологические характеристики, перерабатываемость и физико-химические свойства. При конверсии выше 80 % практически вся каучуковая фаза переходит в гель-фракцию. Реакция сшивания протекает в условиях исчерпания свободного мономера, когда конкурирующие реакции роста полистирольных цепей становятся маловероятными [308—310]. Основные реакции образования сшитой структуры в ударопрочном полистироле — реакции рекомбинационного обрыва гомополистирольных (реакции 6.2 и 6.5) или привитых полистирольных (реакции 6.1 и 6.2) цепей. Реакции сшивания так же, как и реакции прививки, существенно зависят от химического строения и структуры используемого каучука. Сшивание предпочтительно идет по двойным связям 1,2-звеньев. При 110 °С отношение константы скорости присоединения стирольного радикала к 1,2-звеньям полибутадиена к константе скорости реакции роста цепи составляет 1,5 10 [310]. Очевидно, несмотря на малые значения этой величины с уменьшением концентрации стирола вероятность образования сшитых полимеров за счет увеличения вклада реакций [c.167]

    ТАБЛИЦА 7.4. Влияние физико-хиМЧЧввки ( параметров tpyктypы на физико-механические свойства ударопрочного полистирола [c.168]

    Анализ известных данных показывает, что не существует единой физической модели, отражающей взаимосвязь между физикохимическими параметрами структуры и эксплуатационными свойствами ударопрочного полистирола. Это объясняется как отсутствием строгой, единой теории упрочнения полистирола каучуком, так и больщим числом взаимосвязанных и порой взаимоисключающих друг друга факторов, которые определяют свойства ударопрочного полистирола. На основании патентных и литературных данных о влиянии структуры ударопрочного полистирола на его свойства можно представить эмпирическую связь между важне -шими физико-химическими параметрами структуры и основными физико-механическими свойствами полимера (табл. 7.4). [c.168]

    Как следует из табл. 7.4, наибольшее влияние на свойства ударопрочного полистирола оказывают параметры, связанные с дисперсной каучуковой фазой (концентрация каучука, содержание гель-фракции, включающей каучук с привитыми и окклюдированными нолистирольными цепями, степень ее сшивания и размер каучуковых частиц). Именно поэтому в последние годы внимание исследователей направлено на выбор оптимальной структуры каучуков, применяемых при получении ударопрочного полистирола, с целью управления реакцией прививки и размером частиц каучуковой фазы, а также повышения эффективности использования каучука — наиболее дорогостоящего компонента синтеза. [c.168]

    В периодическом процессе инверсия фаз является следствием накопления в системе определенного количества привитого и го-мополистирола. Реакционная система обязательно проходит через инверсию, причем момент инверсии можно сдвигать в сторону больших или меньших конверсий, вводя в систему различное количество полибутадиена или добавок, влияющих на состояние межфазного слоя. В момент инверсии фаз закладывается морфология ударопрочного полистирола, во многом определяющая физико-ме-ханические свойства полимера. [c.173]

    В непрерывном процессе реакционная масса в первом реакторе полимеризационного каскада находится в состоянии, уже далеком от инверсии фаз, и введение свежего раствора каучука в стироле приводит к его прямому диспергированию, т. е. система не проходит все стадии инверсии фаз. Следствием этого является ухудшение условий прививки и формирования структуры ударопрочного полистирола. Именно поэтому для получения непрерывным блочным методом полимера со свойствами, аналогичными свойствам блочно-суспензионного продукта, необходимо увеличивать концентрацию каучука или применять специальные технологические приемы— проводить стадию форполимеризации в параллельно обвязанных реакторах, поочередно работающих в периодическом режиме, с последующей полимеризацией в непрерывно работающем реакторе [англ. пат. 1175261, 1175262], вводить стадию предфор-полимеризации исходного раствора до конверсии не более 10 % [пат. США 3658946], осуществлять рециркуляцию реакционного раствора на стадии форполимеризации [англ. пат. 1536537] и т. д. Анализ приведенных в патентах технологических приемов показывает, что все они повышают эффективность прививки путем приближения условий синтеза в инверсионной области к условиям [c.173]

    Промышленная ценность привитых сополимеров (а также блок-сополимеров, рассматриваемых как часть класса привитых сополимеров) зависит в значительной мере от того, имеют ли они преимущества перед механическими смесями полимеров. Между этими двумя типами материалов много общего, что особенно заметно для привитых сополимеров, получаемых в промышленных масштабах механо-химическим способом. Значительная разница проявляется, например, в случае ударопрочного полистирола, потому что привитой сополимер обладает необычной комбинацией физических свойств. [c.113]

    Основными недостатками полистирола являются хрупкость, низкая теплостойкость и склонность к растрескиванию. С целью улучшения его свойств в настоящее время разработано несколько способов модифицирования полистирола. Повышенной по сравнению с пол истиролом теплостойкостью обладают сополимеры стирола с другими мономерами метилметакрилатом, акрилонитрилом, а-ме-тилстиролом. Совмещением полистирола с синтетическими каучу-ками [59, с. 138 60] получают материалы с повышенной стойкостью к ударным нагрузкам, которые называются ударопрочными поли-стиролами. АБС-пластики представляют собой трехкомпонентную систему на основе стирола, акрилонитрила и полибутадиенового или акрилонитрил-бутадиенового каучука. На долю ударопрочного полистирола и АБС-пластиков приходится 60—70% общего мирового производства полистирольных пластмасс. [c.63]


Смотреть страницы где упоминается термин Ударопрочный полистирол свойства: [c.189]    [c.385]    [c.425]    [c.23]    [c.265]    [c.64]    [c.159]   
Справочник по пластическим массам (1967) -- [ c.120 , c.121 , c.122 ]

Справочник по пластическим массам Том 2 (1975) -- [ c.91 , c.93 ]




ПОИСК





Смотрите так же термины и статьи:

Свойства ударопрочного полистирола и сополимера АБС



© 2025 chem21.info Реклама на сайте