Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Льюиса электронные пары

    По электронной теории Льюиса, кислотой и основанием являются вещества, являющиеся соответственно акцептором и до — нором электронных пар. Льюисовские кислоты (Ь—кислоты) и основания могут не содержать протонов и, следовательно, являются апротонными. Кислотно — основное взаимодействие заключается в образовании донорно-акцепторной связи типа [c.90]

    Нитрование можно промотировать применением кислот типа Льюиса, т. е. соединений, способных принимать электронную пару. Самым лучшим примером нитрующих смесей этого типа является система азотная кислота — трехфтористый бор. Многие органические соединения нитруются почти полностью стехиометрическими количествами азотной кислоты в присутствии трехфтористого бора. Последний действует так же, как катализатор в системе азотная кислота — серная кислота. [c.544]


    Основание по Льюису - это вещество, являющееся донором электронной пары и способное за счет этого реагировать с образованием аддукта. [c.53]

    Электронная теория. Согласно электронной теории, разработанной Льюисом, основание — это соединение, поставляющее электронные пары для образования химической связи,— донор электронных пар кислота — вещество, принимающее электронные пары,— акцептор электронных пар. Кислотно-основное взаимодействие, согласно электронной теории, заключается в образовании донорно-акцепторной связи. В результате взаимодействия кислоты с основанием образуются солеподобные вещества, называемые ад-дуктами. Часто (но не всегда) их удается выделить как индивидуальные соединения. [c.283]

    Таким образом, электронная теория Льюиса рассматривает нейтрализацию в водных растворах, взаимодействие аминов с галогенидами бора, комплексообразование, реакции ангидридов с лодой как сходные процессы. Вещества, являющиеся донорами электронных пар, называют основаниями Льюиса, а акцепторы электронных пар — кислотами Льюиса. [c.284]

    Галогениды кремния являются кислотами Льюиса и образуют аддукты с донорами электронных пар. [c.375]

    Мы видим, что электронная теория Льюиса рассматривает нейтрализацию в водных растворах, взаимодействие аммиака с галогенидами бора, комплексообразование, реакции ангидридов с водой как сходные процессы. Действительно, с точки зрения теории химической связи во всех этих процессах взаимодействие между частицами имеет одинаковую природу — образуется донорно-акцепторная ковалентная связь. Вещества, являющиеся донорами электронных пар, часто называют основаниями по Льюису, акцепторы электронных пар — кислотами по Льюису. [c.252]

    Атом алюминия в такой структуре является акцептором электронной пары, т. е. кислотой по Льюису. [c.210]

    Кислотно-основными, или ионными, называются такие каталитические реакции, которые объясняются присоединением или отщеплением иона водорода (протона), а также реакции, при которых свободная пара электронов у реагирующих веществ или катализатора перемещается без разобщения электронов, образуя координационную связь в комплексном соединении. Отметим здесь же, что согласно теории Льюиса, кислотами называются соединения, молекулы которых способны присоединять электронную пару, т. е, включать ее в электронную оболочку одного из своих атомов. [c.215]


    Аналогично, по схеме Льюиса основания — это доноры электронов, нуклеофильные частицы с неподеленными электронными парами (Х , 0Н , КО-, О, Ы, 8), а кислоты — это акцепторы электронов, электрофильные частицы. Так, углерод и протон являются сильными кислотами. [c.228]

    В ряду оснований Льюиса типа ХНз (Х = Ы, Р, Аз, 5Ь, В1) при увеличении размера атома X присутствие свободной электронной пары сказывается в меньшей степени и тем самым уменьшается сила оснований. Причиной этого можно считать наличие у атомов более тяжелых элементов -орбиталей, что препятствует осуществлению 5р -гибридизации. В соответствии с этим величина угла между связями в группе НХН уменьшается от 107 (ЫНз) до 93° (РНз). [c.530]

    Разрабатывая теорию химического строения, Бутлеров не ставил перед собой задачу выяснения природы химической связи, справедливо считая, что химия в то время еще не была готова к решению этой задачи. Действительно, необходимой предпосылкой создания теории химической связи было выяснение строения атома. Лишь после того, как стали известны основные черты электронной структуры атомов, появилась возможность для разработки такой теории. В 1916 г. Дж. Льюис высказал предположение, что химическая связь возникает путем образования электронной пары, одновременно принадлежащей двум атомам эта идея послужила исходным пунктом для разработки современной теории ковалентной связи. В том же 1916 г. В. Коссель предположил, что при взаимодействии двух атомов один из них отдает, а другой принимает электроны при этом первый атом превращается в положительно заряженный, а второй [c.100]

    До развития квантовомеханических представлений (до 30-х гг. XX в.) в теории связи господствовал метод локализованных электронных пар. классифицирующий связи как ионные, ковалентные и координационные (семиполярные) (В. Коссель, Г. Льюис). Согласно теории Льюиса, элементы образуют связи до заполнения внешней оболочки и образования устойчивого октета электронов. Это правило соблюдается, однако, лишь для элементов периодической системы от бора до фтора. Кремний, фосфор и сера могут иметь на внешней оболочке до 12 электронов (5Р , РС , [c.24]

    Физический смысл представления об электронной паре, положенный Льюисом в основу теории образования связи, стал ясен только в результате развития квантовой механики, когда оказалась возможной математическая трактовка связи. [c.232]

    Льюис считал, что в основе возникновения связи в молекуле лежит наличие между атомами одной или нескольких электронных пар. [c.243]

    Льюисом была выдвинута электронная теория обобщенных кислот и оснований, согласно которой кислота — это акцептор пары электронов, а основание — донор электронной пары. [c.281]

    В 1907 г. вышла книга H.A. Морозова Периодические системы строения вещества , где автор, применяя разработанные им модели атома, построил модели молекул, предвосхищающие в некоторой степени работы Дж. Льюиса и В. Косселя (1916). Как н Льюис, Морозов придавал образованию электронных пар при возникновении валентной связи особое значение. [c.95]

    Электронная теория кислот и оснований Льюиса. Теория основана на наиболее общем свойстве всех кислот или оснований — их электронном строении. По Льюису, кислоты — вещества, способные присоединять пару неподеленных электронов от основания, а основания — это вещества, способные отдавать пару неподеленных электронов, т. е. быть донорами электронов. В образовавшихся молекулах веществ (продуктах нейтрализации) электронная пара обобществлена между соответствующими ядрами атомов (см. 5.3 и гл. 9). [c.213]

    Почти одновременно с Брёнстедом Льюис предложил более широкую теорию кислот и оснований. Согласно этой теории, основанием, как и в теории Брёнстеда, считается соединение с доступной парой электронов, либо неподеленной, либо находящейся на я-орбитали. Однако кислотой Льюиса считается любая частица с вакантной орбиталью [85]. В кислотно-основной реакции Льюиса электронная пара основания образует ковалентную связь с вакантной орбиталью кислоты, что в общем виде можно выразить уравнением [c.337]

    Разрабатывая теорию химического строения, Бутлеров не ста зил перед собой задачу выяснения природы химической связи, справедливо считая, что химия в то время еще не была готова к решению этой задачи. Действительно, необходимой предпосыл кой создания теории химической связи было выяснение строения атома. Лишь после того, как стали известны основные черты элеК тронной структуры атомов, появилась возможность для разработки такой теории. В 1916 г. американский физико-химик Дж. Льюис высказал предположение, что химическая связь возникает путем образования электронной пары, одновременно принадлежащей двум атомам эта идея послужила исходным пунктом для разработки современной теории ковалентной связи. В том же 1916 г. немецкий ученый В. Коссель предположил, что при взаимодействии двух атомов один нз них отдает, а другой принимает электроны при этом первый атом превращается в положительно заряженный, а второй — в отрицательно заряженный ион взаиМ ное электростатическое притяжеиие образовавшихся ионов и приводит к образованию устойчивого соединения. Дальнейшее развитие идей Косселя привело к созданию современных представлений [c.119]


    Карбоний-ион с пептакоординированным атомом углерода, образовавшийся из изобутана па первой стадии алкилирования, предстанляет собой, по-видимому, довольно лаоряжепную структуру, от которой льюисовский кислотный центр в состоянии оторвать два водородных атома совместно с электронной парой. В результате возникает традиционный карбоний-пон трет/1-бутила, который взаимодействует с молекулой бутена с образованием карбоний-иона С . Если через Ь и И—О—Ъ обозначить кислотные центры Льюиса и Бренстеда соответственно, то первые три стадии алкилирования [c.347]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    Еще во времена Бенджамина Франклина и Джона Дальтона высказывалось предположение, что силы взаимодействия между частицами материи должны иметь главным образом электрическое происхождение. Однако поскольку одноименные заряды отталкиваются друг от друга, существовало неправильное мнение, что между одинаковыми атомами не могут возникать связи тем не менее в настоящее время все хорошо знают, что большинство распространенных газов состоит из двухатомных молекул Н2, N2, О2, р2, С12 и т.д. Эта грубая ошибка привела к почти полувековой путанице с молекулярной структурой и атомными массами так, полагали, что газообразный водород описывается формулой Н, а не Н2, воду описывали формулой НО вместо Н2О, а кислороду приписывали атомную массу 8 вместо 16. Лишь в 1913 г. Льюис ввел представление о том, что электронные пары являются тем клеем , который соединяет между собой атомы с образованием ковалентных связей, однако теоретическое объяснение роли электронных пар было дано спустя еще 20 лет. Опыты Фарадея показали, что заряды на ионах всегда кратны некоторым элементарным единицам заряда, причем моль этих зарядов составляет 1 Р, а Стоней назвал эту элементарную единицу заряда электроном. Однако Стоней отнюдь не отождествлял электрон с какой-либо частицей, которую можно было попытаться изолировать и исследовать. [c.47]

    В данной главе будет рассмотрен простой метод описания ковалентных связей с использованием структурных схем Льюиса. Мы занищем льюисовы структуры для известных молекул и ионов и дадим им объяснение, пользуясь представлениями об обобществлении электронных пар и построении замкнутых валентных оболочек такого типа, как у атомов благородных газов. Затем мы объясним степени окисления атомов в соединениях на основе соображений о неравномерности обобществления электронных пар атомами, обладающими разной электроотрицательностью, после чего перейдем к установлению взаимосвязи между кислотностью некоторых молекул и электронным строением их центрального атома. В последней части главы будет показано, как для предсказания формы молекул используется метод отталкивания валентных электронных пар (ОВЭП). [c.465]

    С точки зрения Аррениуса, НСГкислота, а NaOH-основание. С точки зрения Бренстеда, кислотой является ион HjO , а основанием-гидрок-сидный ион (ОН ), поскольку именно эти частицы обмениваются протоном. С точки зрения Льюиса, кислотой является сам протон, поскольку он взаимодействует с неподеленной парой электронов гидроксидного иона гидроксидный ион является донором электронной пары и, следовательно, основанием  [c.474]

    Кислота по Льюису это вещестао, являю[цееся акцептором элек-фонной пары и способное реагировать с молекулами, обладающими неподе-ленными электронными парами с образованием аддукта. [c.50]

    Значение электронных пар и октетов в образовании ковалентной связи между атомами было впервые оценено в работах Льюиса в 1016 г. Выяснение же ее механизма на основе методов квантовой механики было дано Гейтлбфом и Лондоном (1927). [c.65]

    Льюиса химическая связь осуществляется посредством образования общей электронной пары, в которую каждый атом дает по одному электрону. Поэтому такая химическая связь и получила иазваппе ковалентной Таким образом, ковалентная связь осуществляется электронной парой, которая, как известно, образуется нз электронов с нротиаополо. кными спинами. Следовательно, в образовании химической связи между атомами могут участвовать лишь одиночные, или непарные, электроны, спиновые квантовые числа которых по знаку противоположны. [c.43]

    Кислоты и сила кислот. По Льюису, кислота — акцептор, а основание-донор электронной пары. Кислотами, по Льюису, являются AI I3, ВРз, Н+ и т. д. Согласно определению Бренстеда, кислота является донором, а основание — акцептором протона. Каждая кислота Бренстеда сопряжена с основанием  [c.158]

    Еще более универсальное определение кислоты и основания было предложено Г. Льюисом, пытавшимся распространить эти понятия не только на реакции с переносом протона, но и на все остальные. В этом определении основная роль отводится участию электронных пар нейтральных или заряженных частиц в химическом взаимодействии. Катионы, анионы или нейтральные молекулы, способные принять одну или несколько электронных пар, называются кислотами. Например, А1Гз — кислота, способная принимать электронную пару при взаимодействии с аммиаком  [c.75]

    Теория Льюиса — Лэнгмюра. Заполненное двумя электронами связывающее молекулярное состояние в качественной теории Льюйса называется двухэлектронной связью. Электронное облако обозначается черточкой, соединяющей атомы. При этом несвязывающие, или так называемые одиночные (неподеленные, необобщенные) электронные пары того же электронного слоя отмечаются черточками вокруг символа атома, например  [c.51]

    Ковалентная (неэлектровалентная, или гомеополярная) связь. При образовании связи между атомами, электроотрицательности которых равны или отличаются незначительно, передачи электронов от одного атома кдр у т ому не происходи т. В этом случае связь образуется за счет обобществления электронов (двух, четырех или шести), принадлежащих обоим атомам до образования химической связи (Коссель, Льюис, 1916). Каждая из этих электронных пар образует только одну ковалентную связь  [c.19]

    Каждое основание, которое мы обсуждали до сих пор, будь то ОН , Н О, какой-нибудь амин и ш анион, является донором электронной пары. Любое вещество, обладающее свойствами основания в рамках представлений Бренстеда - Лаури (т.е. акцептор протона), с точки зрения Льюиса, также является основанием (до1юром электронной пары). Однако в теории Льюиса допускается, что основание донируег электронную пару не только ее акцептору Н . Поэтому определение Льюиса значительно расширяет круг веществ, которые могут рассматриваться как кислоты Н представляет собой отнюдь не единственно возможную, с точки зрения Льюиса, кислоту. Рассмотрим, например, реакцию между КН, и ВРз. Эта реакция возможна по той причине, что в валентной оболочке ВРз имеется вакантная орбиталь (см. разд. 7.7, [c.99]

    Поскольку ионы металлов несут на себе положительные заряды, они притягивают к себе неподеленные электронные пары молекул воды. Это взаимодействие, называемое гидратацией, как раз и является главной причиной растворения солей металлов в воде, о чем уже говорилось в разд. 12.2, ч. 1. Сила притяжения возрастает с увеличением заряда на ионе металла и с уменьшением его размеров. Хорошей мерой прочности гидратации служит отношение ионного заряда к ионному радиусу. Для некоторых ионов металлов это отношение указано в табл. 15.7. В рамках представлений Льюиса процесс гидратации можно рассматривать как взаимодействие кислоты и основания, причем ион металла играет роль льюисовой кислоты, а молекулы воды-роль льюисовых оснований. Когда молекула воды взаимодействует с положительно заряженным ионом металла, электронная плотность оттягивается от атома килорода, как показано [c.100]

    В теории кислот и оснований Льюиса внимание сосредоточено не на способности к отщеплению (донированию) или присоединению (акцептированию) протона, а на способности к обобществлению электронной пары. По Льюнсу, кислотой называется акцептор электронной пары, а основанием -донор электронной пары. Теория Льюиса является более общей, чем теория Бренстеда-Лаури, поскольку она применима не только к случаям, когда в роли кислоты выступает протон. [c.103]

    Кислотно-основной катализ осуществляется не только кислотами и основаниями Бренстеда (протонными), но и в присутствии апротонных кислот и оснований по Льюису. Согласно Льюису, основание — вещество, донор электронных пар, например 1МН3, а кислота — вещество, акцептор электронных пар, например А1С ВРз, 5пС14- Кислоты Льюиса катализируют многие ре- [c.626]

    Процесс возникновения электронной пары при связеобразо-вании впоследствии получил обоснование с точки зрения квантовой теории. Хотя модель Льюиса (с дополнениями Лангмюра) дала возможность понять некоторые экспериментальные факты, в настоящее время она совершенно оставлена. [c.244]

    Разница в свойствах этих двух соединений, не рассматриваемая теорией Косселя, была объяснена Льюисом, представившим строение пентахлорида и пятиокиси фосфора, как это показано на рис. 36. В молекуле Р2О5 у атомов Р есть свободные места, не занятые электронными парами. Этим объясняется способность Р2О5 к полимеризации и присоединению одной или нескольких молекул воды с образованием различных продуктов гидратации. Оставалась неясной только причина устойчивости десятиэлектронной оболочки, образующейся в молекуле РС1б. [c.245]

    Эта теория ограничена веществами, в состав которых входит иодород, хотя имеется большое число веществ кислотного характера, не содержащих водорода. Согласно другой теории <Г. Льюис) кислотой называется вещество, присоединяющее пару электронов, а основанием — вещество, отдающее пару электронов. Таким образом, кислота — акцептор пары электронов. а основание — донор электронной пары. Эта теория включает не только кислоты и основания в традиционном их понимании, но и электронно-ненасыщенные соединения, например га-логеииды бора, алюминия, олова, оксиды ряда металлов. [c.91]


Смотреть страницы где упоминается термин Льюиса электронные пары: [c.327]    [c.385]    [c.626]    [c.182]    [c.538]    [c.33]    [c.113]    [c.626]    [c.107]   
Как квантовая механика объясняет химическую связь (1973) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Введение связь, образованная парой электронов по Льюису

Льюис

Льюиса гипотеза электронной пары

Связь электронной парой формула Льюиса

Электронная пара



© 2025 chem21.info Реклама на сайте