Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая ползучесть

    Для эластомерных систем предлагается [36] новый метод ТМА, основанный на измерении температурной зависимости деформации сшитых образцов, предварительно растянутых в высокоэластическом состоянии статической нагрузкой до псевдоравновесного состояния, в интервале температур от 123 до 673 К. При охлаждении такого образца его удлинение происходит до достижения температуры потери высокоэластичности Т в,. При последующем нагревании до температуры начала химической ползучести Тх образец сокращается. В интервале Тп в -Тха для ненаполненных вулканизатов обычных каучуков процесс практически обратим и равновесен и определяется изменениями конформационного состояния цепей, образующих [c.419]


    В то же время реакции деструкции вулканизационной сетки ответственны за процессы химической релаксации (ХР) и химической ползучести (ХП) резин [1—4]. Близкая природа явлений, обусловливающих с одной стороны ХР и ХП, с другой стороны — усталостные изменения в резинах и их старение, обсуждается, например, в обзоре Диллона [5, 6]. [c.148]

    ХИМИЧЕСКАЯ ПОЛЗУЧЕСТЬ РЕЗИН [c.159]

    Из этого уравнения вытекает соотношение, названное Тобольским [4] функцией химической ползучести (ФХП)  [c.159]

    При соответствующих условиях обнаруживается изменение кривых ползучести для образцов каучука, находящихся под постоянной нагрузкой, вследствие протекания химических процессов. Если происходит только разрыв связей, то в образцах после мгновенной упругой деформации наблюдается неограниченный рост деформации во времени. Функция химической ползучести (ФХП) определяется следующим образом  [c.462]

    Рациональное применение присадок для смазочных масел основывается на связи между качеством присадок и необходимым уровнем улучшения качества смазочного масла. Этот уровень определяется предельным состоянием, достигаемым машиной или механизмом и устанавливаемым по различным видам износа механический износ, усталостные разрушения, ползучесть, старение материала, коррозионный износ, химический (коррозионно-механический) износ и др. Химический износ особенно значителен при использовании присадок химического действия. [c.129]

    В напряженном состоянии сталь реагирует на высокие темпе-1)атуры значительно сильнее возникают ползучесть и релаксация, а также может нарушиться стабильность ее структуры. Интенсивность ползучести, релаксации и характер нарушения стабильности сталей зависят от их химического состава, структуры, а также от напряжений и температур, которым они подвержены в процессе эксплуатации. [c.19]

    Основной характеристикой физико-механических свойств материала труб является жаропрочность, определяемая его химическим составом и способом изготовления. Жаропрочность характеризуется текучестью и ползучестью материала, вызываемых пластической деформацией. Для труб печей пиролиза допускается деформация в 5% [6 . [c.197]

    В напряженном состоянии сталь реагирует на высокие температуры значительно сильнее возникают явления ползучести, релаксации, наруше-Ш1я стабильности структуры. Интенсивность и характер этих явлений зависят от химического состава и структуры сталей, а также от действия напряжений и температур, которому они подвержены в процессе эксплуата- [c.11]


    Проблемы реологии привлекают к себе все большее внимание теоретиков механиков, занимающихся вопросами пластичности и ползучести, специалистов по физико-химической механике материалов и дисперсных систем, специалистов по физике твердого тела и т. д. Кроме того, реологические вопросы возникают повсеместно при решении самых различных технологических задач в разных отраслях производства. Приложения реологии важны для технического прогресса в химической, текстильной, строительной, торфяной, пищевой промышленности, в машиностроении, сельском хозяйстве и т. п. [c.128]

    Третья группа работ охватывает новейшие физико-химические методы исследования полимеров ИК- и УФ-спектроскопию, ЯМР, дифференциальный термический анализ, полярографию и хроматографию. Она содержит описание методик конкретных лабораторных задач по исследованию свойств полимеров и, что особенно важно, носит методический характер, т. е. позволяет человеку, не имеющему специального опыта, поставить эксперимент по снятию термомеханических кривых, определению температур физических переходов, изучению релаксации напряжения и ползучести и т. д. [c.7]

    Критерием статической прочности характеризуют, например, такие элементы химического оборудования, как обечайки и другие детали сосудов и аппаратов, работающих при постоянном внутреннем давлении, быстровращающиеся роторы и диски, детали с большим начальным усилием затяжки (большая часть крепежных деталей), несущие конструкции, находящиеся под постоянной нагрузкой. Представляет опасность явление ползучести нагруженных деталей — изменение во времени деформаций и напряжений, особенно сильно проявляющееся при высоких температурах. [c.96]

    Химические реакции принадлежат к термически активируемым процессам, поэтому принято относить результат механического воздействия к изменению энергетического активационного барьера химической реакции. При этом предположение о линейной зависимости уменьшения аррениусовской энергии активации (энергетического барьера) термически активируемого процесса от величины растягивающего напряжения обычно вводится произвольно (теории ползучести металлов, уравнения долговечности полимеров и т. д.) или в лучшем случае как первое приближение разложения неизвестной зависимости в ряд Тэйлора. Формализм такого подхода не позволяет раскрыть физический смысл коэффициентов в соответствующих уравнениях (в том числе активационного объема) и более того приводит к противоположному результату при замене растягивающих напряжений сжимающими (вопреки эксперименту) растяжение подлежащей разрыву химической связи увеличивает мольный объем веществ в активирован- Ном состоянии и согласно классическому уравнению Вант-Гоффа для зависимости константы скорости реакции от давления сжимающее давление должно тормозить реакцию, т. е. сдвигать химическое равновесие в сторону рекомбинации связей. [c.4]

    Отмеченные выше общие феноменологические закономерности подсказывают, что объяснение различных типов поведения должно быть связано с влиянием оксидных пленок (окалин) и других обусловленных коррозией микроструктурных и химических изменений на процессы горячей пластической деформации, зарождения и роста трещин в материалах. В двух последующих разделах будут изложены краткие сведения по образованию оксидных пленок и влиянию окалины и других микроструктурных и химических изменений материала в высокотемпературной среде на его механические свойства. При этом, кроме информации о ползучести и разрушении, будут использованы данные и из других областей. Вслед за этими разделами будет проведено заключительное обсуждение, объясняющее и обобщающее известные факты, а также намечающее проблемы для дальнейших исследований. [c.18]

    В ЭТОЙ главе дан обзор современного состояния знаний в области коррозионной ползучести и разрушения материалов. Понимание этих процессов основано главным образом на обобщении результатов многочисленных исследований коррозионной ползучести, не содержащих, как правило, систематического параметрического анализа. Определенная информация получена также в смежных областях, например при исследовании коррозионной усталости и прочностных свойств плакированных металлов при комнатной температуре. К числу основных результатов следует отнести выводы об упрочняющем воздействии поверхностных оксидов (окалин) и об ухудшении параметров ползучести и разрушения в горячих агрессивных средах вследствие разрушения поверхностной окалины и химического воздействия на металл. [c.46]

    Воздействие тепла и кислорода иа напряженные полимеры приводит к деструкции полимерных молекул, следствием которой являются химическая ползучесть, химическая релаксация и уменьшение долговечности. Имеются стандартные методы испытаний на определение ползучести растянутых образцов резины при старении (Р = onst), релаксации напряжения и остаточной деформации в сжатых образцах (е = onst). [c.130]


    ИССЛЕДОВАНИЕ МЕХАНИЗМА ТЕРМИЧЕСКОЙ И ТЕРМОРКИСЛИТЕЛЬНОИ ДЕСТРУКЦИИ ВУЛКАНИЗАТОВ ПО ДАННЫМ ХИМИЧЕСКОЙ РЕЛАКСАЦИИ НАПРЯЖЕНИЙ И ХИМИЧЕСКОЙ ПОЛЗУЧЕСТИ [c.161]

    Химическая релаксация напряжения полимера, находящегося нри постоянной деформации, или его химическая ползучесть при действии постоянного напряжения (усилия) являются наиболее безобидными изменениями материала, при котором его целостность и внешний вид не изменяются, однако может исчезнуть его уплотняющее действие. Это явление наблюдалось при повышенных температурах 0-100° С) на резинах из ненасыщенных и других каучуков полисульфидпых силоксановых карбоксил содержащих уретановых, фторкаучуков полиакрилатных [c.66]

    Рассматриваемое явление родственно химической релаксации напряжений и химической ползучести полимеров, в которых определенную роль играют окислительные, обменные и другие химические реакции [12]. В ходе ТМА безусловно могут протекать одновременно разрывы сетки и чисто механические, и вызванные действием химических агентов (например, растворенного в полимере кислорода). Нередко при этом происходят параллельно процессы деструкции и структурирования. В случае преобладания последних наблюдается ожестчение материала, наступающее обычно после временного размягчения. Иногда в результате этих процессов образуется твердый неплавкий остаток типа кокса, и в опытах пенетрации дойти до конца не удается. Соответствующие ТМА-кривые будут приведены в главе, посвященной термическим реакциям в полимерах. [c.141]

    При возде11Ствии высоких температур в условиях напряженного состояния в сталях возникают ползучесть и релаксация, протекающие с различной интенсивностью в зависимости от химического состава стали, ее структуры, внутренних напряжений, температуры и др. Некоторые стали проявляют склонность к нарушению стабильности структуры. [c.9]

    В соответствии с геометрическим строением элементов твердой фазы выделяются корпускулярные, губчатые, сетчатые, пластинчатые, волокнистые п другие типы структур, в пределах которых также существует множество разновидностей. К корпускулярным структурам, например, относят тела, в которых поры образованы промежутками (пустотами) между компактными частицами, составляющими скелет тела, а поры губчатого строения представляют собой каналы и иолостп в сп.тошном твердом теле. Возможны смешанные структуры, в которых содержится несколько типов элементов. По принципу дополнительности аналогичная к.тассп-фикация справедлива и для описания пространства пор. Принцип дополнительности играет основную роль прп выборе моделей для описания физико-химических явлений и процессов в пористых средах. Например, при описании таких явлений, как фильтрация, диффузия, капиллярная конденсация, капиллярное всасывание, высыхание, электропроводность и т. п., используются модели, описывающие строение пространства пор, тогда как для решения задач прочности, деформации, ползучести, коррозии, отвердевания и т. п. 1юп0льзуются в основном модели строения твердого скелета. [c.127]

    Выбор материала диктуется, конечно, не одними только соображениями об учете ползучести, но также и условиями коррозии (в частности, в синтезе аммиака — водородной коррозии), жарохрупкости и т. д. Рассмотрение этих вопросов не входит в наши задачи н составляет предмет курса Химическое сопротивление материалов и специальных курсов оборудования. Явление же ползучести, как видно из предыдущего, тесно связано с одним из основных вопросов механического расчета — выбором допустимых напряжений. [c.340]

    Характерным примером процесса деградации полимера под напряжением является деградация ненасыщенных каучуков в атмосфере озона. Скорости возникновения трещин, их роста, образования свободных радикалов, релаксации напряжения и ползучести увеличиваются в атмосфере озона в тысячу раз и более [196, 197, 199, 201, 204—206]. Данная химическая реакция выяснена не полностью. Обычно предполагается, что первые этапы деградации ненасыщенных полимеров в атмосфере озона соответствуют механизму Криги . [c.314]

    На том же рис. 9.4 приведена кривая ползучести и,цеального сетчатого эластомера (кривая 2) в нем не возникает необратимая деформация из-за наличия прочных химических связей, исключающих взаимное перемещение макромолекул. Эластическая деформация осуществляется лишь в той мере, в какой позволяет сетка химических связей ползучесть развивается, достигая предела. После разгрузки образец сокращается до первоначальных размеров. [c.123]

    Выше (см. гл. XVIII, 8) рассматривалось явление ползучести. Мероприятия по устранению этого явления, как и других, требующих увеличения площадей под отвалы добычи и переработки ископаемого сырья, могут быть основаны и на физико-химических методах. Одним из путей повышения устойчивости отвалов является адгезионное воздействие на горный массив при введении химических реагентов или создание адгезионного взаимодействия между породами. Целесообразность применения того или иного способа упрочнения горных пород определяется петрографичеоким типом пород. Практически воздействия, упрочняющие гориые породы, могут быть осуществлены путем введения в предварительно пробуренные скважины по периметру отвала горных выработок материала с высокой химической активностью, создающего в породах зоны повышенной прочности. Фазовые превращения, определяющие необратимые прочностные свойства гетерогенной дисперсной системы, состоящей из породы (например, глинистой), добавки (например, цемента, извести) и воды, связаны с образованием малорастворимых соединений на границе раздела фаз. [c.291]

    Неоднородность структуры поверхности кристалла предопределяет возможность наличия вдоль нее градиента химического потенциала. Это приводит к поверхностной самодиффузии (диффузии вещества кристалла) и гетеродиффузии (диффузии чужеродных частиц). Эти процессы идут в направлении выравнивания поверхности граней, залечивания их дефектов. Кроме того, распространению вещества по поверхности (его ползучести, растеканию) способствуют неровности, которые служат стоками для диффундирующих частиц. [c.342]

    Повышает прочность и твердость. Понижает пластические свойства. Очень эффективно влияет на сохранение механических свойств при высоких температурах (жаропрочность). Способствует повышению предела ползучести. Понышает красностойкость. Повышает химическую стойкость нержавеющих сталей против действия некоторых кислот и щелочей. Уменьшает теплопроводность. Увеличивает коэрцитивную силу и остаточный магнетизм. Увеличивает прокаливаемость. Уменьшает склонность стали к отпускной хрупкости. Препятствует смягчению стали при отпуске за счет вторичной твердости [c.18]

    Химическая стойкость резин в средах определяется по различным показателям Е зависимости от условий работы детали по изменениям веса (ГОСТ 421—59) и предела прочности н относительного удлинения при разрыве (ГОСТ 424—63), по времени появления трещин и разрыва образцов при постоянной деформации (ГОСТ 6949—63), по изменениям стойкости к многократным деформациям (ГОСТ 11805—66), ио времени до разрыва образца при постояппом напряжении и скорости ползучести (ГОСТ 11596—65) и др. [c.323]

    Для исследования химического сопротивления полимерных материалов необходимо глубокое изучение закономерностей и механизмов протекающих процессов механическими, физическими, химическими, структурными и другими методами. Работосиособиость пластмасс с различными механическими и реологическими свойствами для изготовления силовых конструкций, применяемых в химическом аппаратостроеиии, должна прогнозироваться либо по предельно допустимым напряжениям, либо ио предельно допустимым деформациям. Для материалов на полимерной основе вр>еменная зависимость прочности и ползучести имеет ярко выраженный характер, что говорит в пользу кинетического подхода к исследованию процессов деформации и разрушения. [c.43]

    Предсказать, как те или иные структурные и химические изменения отразятся на механических свойствах в целом или на ползучести и разрушении материала в частности, практически невозможно даже в том случае, когда эти изменения описаны количественно. Дело в том, что (отвлекаясь от синергитических эффектов) многие из перечисленных выше изменений могут оказывать как положительное, так п отрицательное влияние в зависимости от конкретного сплава. Ниже будут рассмотрены на основе исследо- [c.26]

    Селективное окисление, происходящее в процессе формирования окалины и подокалины, может приводить к изменению химического состава подокалины, крайним проявлением которого может стать растворение упрочняющих выделений. В восстанавливающих средах, например, может иметь место потеря межузельного углерода в результате обезуглероживания или даже растворение упрочняющих карбидов, что ухудшает характеристики ползучести [58, 103, 159]. Как было показано, опасность таких процессов особенно велика в среде жидкого натрия, используемого в ядерных установках [160]. Потеря приповерхностных выделений при эскпо-зиции в окислительных средах особенно характерна для таких сплавов, где алюминий, являясь сильным оксидобразующнм элементом, определяет и прочность сплава, входя в состав упрочняющих интерметаллических фаз. Например, основной упрочняющей фазой жаростойких суперсплавов служит Ы1зА1 (фаза -у ) и обеднение приповерхностных слоев материала этой фазой в результате испытаний на ползучесть бывает очень заметным (см. рис. [c.33]

    В основе получения модифицированных типов Б К могут лежать и другие химические реакции. Регулированное сшивание БК в условиях полимеризации вызывается строго дозированной добавкой в шихту диенов с несопряженными двойными связями, например дивинилбензола, диметаллила и др. В зависимости от количества диена получаются растворимые, структурированные БК, а также сшитые продукты с различным содержанием геля (до 80%). Сшитый БК обладает меньшей ползучестью, большей восстанавливаемостью, несколько улучшенными физико-механическими показателями вулканизатов. Понижение скорости шприцевания заготовок из сшитого БК можно предотвратить увеличением дозировки диена (выше 4%). [c.282]

    Кроме этого следует отметить недостатки самого полимерного продукта, в частности, повышенную ползучесть, относительно низкую скорость вулканизации, несовулканизуемость с каучуками общего назначения, неудовлетворительную адгезию, плохую совместимость с некоторыми ингредиентами, малую эластичность при комнатных температурах, высокое теплообразование при многократных деформациях. Лишь некоторые из отмеченных недостатков можно устранить изменением рецептуры резиновых смесей и условий их обработки. Однако радикального изменения свойств БК и в первую очередь увеличения скорости вулканизации можно достигнуть лишь химическим путем. [c.322]


Смотреть страницы где упоминается термин Химическая ползучесть: [c.511]    [c.96]    [c.2]    [c.385]    [c.72]    [c.365]    [c.10]    [c.42]    [c.44]    [c.27]    [c.276]    [c.234]   
Термомеханический анализ полимеров (1979) -- [ c.141 ]




ПОИСК





Смотрите так же термины и статьи:

Ползучесть



© 2025 chem21.info Реклама на сайте